Implementing a 32-bit Processor-based
Design in an FPGA

S This tutorial shows how to create a simple 32-bit FPGA design with a soft-core and
ummary

program it with a piece of software. The software will access the designed hardware
Tutorial causing a row of LEDs to blink in a counting pattern.

TUO128 (v1.1) May 16, 2008

1.1 Introduction

In this tutorial we will show how to create a simple 32-bit processor based design in an FPGA. The design includes a soft-core
and the FPGA will be connected to a series of LEDs. The processor soft-core in the FPGA will be programmed with a piece of
software. The completed example shows a row of 8 LEDs on the NanoBoard that are binary counting from 0 to 255.

What do you need?

In order to follow the steps described in this tutorial, you need the following:

* Altium Designer Embedded Intelligence (Unified licence).

* a NanoBoard NB2DSKO01 with a Xilinx Spartan 3 S1500 daughter board + Xilinx ISE software.
The NanoBoard must be connected to your PC via a USB cable or a parallel cable.

Outline of the example

A typical design consists of a processing soft-core plus all necessary peripherals living inside an FPGA. This design is made in
an FPGA project. Software is needed to make the system do something useful. This software will run on the soft-core and is
developed in an embedded project.

This tutorial is an embedded hardware equivalent of "Hello world”: a counting row of LEDs. The goal of this example is to
explain how the FPGA design tools and embedded tools work and how they fit together to create a first working example. The
tutorial consists of three major steps:

* First an FPGA design is created. The design will contain a processing soft-core, an interface to the LEDs on the NanoBoard,
a clock, a reset button and a JTAG chain for communication with your PC. The FPGA design will then be configured for the
type of FPGA that is resident on the daughter board plugged into the NanoBoard.

* In the next section a software project is created and software will be written to program the soft-core of the FPGA design.
The software project will be integrated in the FPGA project.

* Finally, the whole project is built and loaded into the FPGA after which the LEDs start counting.
Let us start with the tutorial. If you have not done so:

e Start Altium Designer.

1-1

Implementing a 32-bit Processor-based Design in an FPGA

1.2 Create the Hardware Design

1.2.1 Create and Save a New FPGA Project

1. From the File menu, select New » Design Workspace to create an empty workspace.

2. From the File menu, select New » Project » FPGA project to create a new FPGA project.
A new project named "FPGA_Project1.PrjFpg” is added in the Projects panel.

3. From the File menu, select New » Schematic to create a new schematic document.

A new schematic document is added to the Projects panel named "Sheet1.SchDoc”.
This new document is part of the FPGA project.

Projects like these tend to grow quite fast, so it is best to start with a reasonably sized sheet:
4. On the opened schematic, right-click and select Options » Sheet...

The Document Options dialog appears:

* Set the sheet size to, for example, C.
* Click OK to confirm the new settings.

Document Options E|g|
arameters || Units
Template Standagg
File M ame 1 Standard styles C
Options Grids Custom Style
Orientation %Landscape | —
. : Snap ._w | lse Custom style [
Title Block, ;Standard w | il
Sheet Number Spaces 4 Visible [10
Show Reference Zones
| Default; Alpha Top to Bottam, v Electrical Grid
Show Border Enable
[Shaw Template Graphics e R ange 4
Update From Standard
SheetCo
e Change System Font
Ok Cancel

5. To save the new project, click the Workspace button and select Save All:

* Inthe Examples directory of Altium Designer, create a new directory named (for instance) Getting Started and save
the files. (You can use the default file names or give them more meaningful names. In this tutorial we will use
BlinkingLED.SchDoc and FPGA Processor 32bit.PrjFpg.)

Implementing a 32-bit Processor-based Design in an FPGA

1.2.2 Draw the Hardware Schematic

1. Add a TSK3000A processor soft-core to the schematic and configure it
First make sure the Libraries panel is visible:
1. Click on the System button at the right bottom of your screen and make sure Libraries is checked.

2. On the Libraries panel: from the FPGA Processors.IntLib library, choose the TSK3000A processor:
* Drag the processor to your empty sheet
* Place the TSK3000A horizontally in a central position towards the top of the sheet.

The TSK3000A is a rather clean processor soft-core with a well defined set of peripherals: it contains a hardware multiply/divide
unit, an internal clock, an interrupt controller, a memory controller and some JTAG based debug logic. More information on the
TSKB000A is available in the CR0121 TSK3000A 32-bit RISC Processor document. To access this document, click on the
TSKB000A you just added to your schematic and press the F1 key.

The TSK3000A processor soft-core as you just placed on the sheet, needs to be configured:

3. Right-click on the TSK3000A you just placed and select Configure U?(TSK3000A)...
(U? is the default designator assigned to this component on the sheet, we will annotate later in the tutorial.)
The Configure (32-bit Processors) dialog appears:
* Increase the internal processor memory to 32 kB (other values may work, but we choose 32 kB). Leave the other
settings as they are.
* Click OK to confirm the new settings.

Configure [32-bit Processors) @g|
TSK3000 32-bit RISC Processor [fs<oo B I
7| Processer [
All FPGA Platforms e
= Proceszor bemony On-Chip Debug System
;.Inc:\ude JTAG-Bazed On-Chip Debug System ¥l

If wou zelect OCDS then you will be able to control the processor
from the rack instument, examine and change memory and

g of internal memory for the Processg

Thiz memory will be implemented with dual port FPGA Block Rak register values in real-time and perform source level debugging
and will cantain the boot part of your software application and of the embedded software application running on the processor,
interrupt and exception handlers. If you turn thiz option off the these capabilities will be removed
“Y'ou should alzo place any other speed critical parts of vour but the pracessor will consume less FPGA resources.

application in this memory.

Multiply/Divide Unit (MDU)

;.Hardware DL v.: g.Disable Breakpoints on Hard Reset hd
Select the MO style for the Processor. _This option will allow the MCL ta stop when it hitz & breakpoint
This iz & radeaff between speed and size. immedistely after a hard reset (RST_I pin high)

The fastest MDU will consume the most FPGA resources.

If you zelect "Mo Hardware MDU" then the Multiply and Divide
hardware instructions will not be available and these instructions
will be emulated in software by the C-Campiler.

Implementing a 32-bit Processor-based Design in an FPGA

2. Add LEDs and a general 10 port to the schematic to connect them to the TSK3000A

Now, there is a series of LEDs available on the NanoBoard. They are hooked up to the connectors at which the daughter board
is plugged in and so they are available on pins directly on the FPGA.

All you need to do is make sure the system "knows” which pins to use and connect them to a general purpose 1/O port. First add
the LEDs to you schematic:

1. On the Libraries panel: from the FPGA NB2DSKO01 Port-Plugin.IntLib library, drag the LED component to your sheet:

* Mirror the LED component along its X-axis: left-click on the component, and press the X key while holding your mouse
button down.

* ltis best to place the LEDs on the left of your schematic.
As stated, we need to connect these LEDs to a general purpose 1/O port:
2. On the Libraries panel: from the FPGA Peripherals.IntLib library, drag the WB_PRTIO component to your sheet:

* Place this component on your schematic and mirror it so that the PAO[7. .0] pins are on the left.
* Leave some space between this component and the TSK3000A component.

Your schematic should now look something like this:

m i

Port Wishbone TSK3I000A 32-Bit RISC Processor
OooCcoooo s DADO[7 0] STB_I|f=+ —|l0_sTE_0 ME_STE_0 [f=—
cye_If=r —Jli_cre_o ME_CYC_0 (-
LPE_D|f=— ={|I0_ACK T ME_ACK If|=+
~=}lI0_ADR_0[33.0] ME_ADR_O[1.0] [f=
w3y (10" D AT IE1.0] ME_DAT_I1.0] e
DAT_I[F.0] e w=I0_DAT_0[1.0] ME_DAT_0[F1.0] [
w10 SEL_0[3.0] ME_SEL_0F.0] [+
WE_I[{=+ —=f|10_wE_o ME_WE_0 [k=
CLE I+ |10 CLE_0 ME_CLE_ O (f=
BET_Ifl —4I0_RsT_0 ME_RST_O (=

~cp INT_I31.0]
WEB_PRTIO
Current Corfiguration
CLE 1
T

TSEZ0004

The wB_PRTIO GPIO block is configured as an 8-bit output only block by default. It would be nice to be able to read from it too,
this way we can create counting LEDs by reading the current LED value, increasing it and writing the new value to the output
port.

3. Right-click on the I/O component you just placed and select Configure U?(WB_PRTIO)...
(again, U? is the default designator assigned to this component which we will annotate later.)
The Configure (Wishbone Port I/O) dialog appears:

e Under Kind, select Input/Output.
* Click OK to confirm the new settings.

A second set of pins appears on the left side of the I/O block labelled PAI[7..0].
We will connect these later.

Implementing a 32-bit Processor-based Design in an FPGA

3. Wire the GPIO port to the TSK3000A via a Wishbone Interconnect

Notice that the 1/O port has 8 data bits whereas the TSK3000A has 32 data bits. Further more, it has no address lines. To make
the GPIO port available in the processor 1/O space, we need to wire the port to the TSK3000A using glue logic.

You could create this glue logic using individual gates and buffers, but that would be quite cumbersome. Fortunately, the
TSKB3000A uses a standardized bus, known as the Wishbone bus.

Actually, there are two buses on the TSK3000A, one on the left (the I/O bus) and another one on the right (the memory bus).
Most peripherals (actually, all peripherals that we will use in this example!) feature the same bus.

Now, to make things easy, there is a special Wishbone component that creates the glue logic for you: the Wishbone
interconnect.

1. On the Libraries panel: from the FPGA Peripherals.IntLib library, drag the WB_INTERCON component to your sheet:

* Mirror the component to fit nicely.
* Place the Wishbone component between the TSK3000A and the 1/O component.

@ Also during dragging, you can mirror the component by pressing the X key.

Notice that the interconnect component has changed since you pulled it from the library. When you pulled it from the library, it
had two Wishbone buses, but once placed, one of them is replaced by a bus marked Spare INT I[31..0].

2. Connect the Wishbone bus to the TSK3000A:

If you move the interconnect component so that its Wishbone pins touch the corresponding Wishbone pins on the I/O bus
from the TSK3000A, red crosses indicate that a connection is recognized and you can draw lines automatically:

* Click on the WB_INTERCON component, drag it towards the TSK3000A until red crosses appear and release the mouse
button.

* Dragthe WB_INTERCON component back to its place while holding down the CTRL-key.
Connections (lines) are automatically drawn.

Since we want to use this component to connect the GPIO port to the processor core, we need other pins on the component.
Therefore we need to configure it:

3. Right-click on the Wishbone interconnect component and select Configure U?(WB_INTERCON)...
The Configure (Wishbone Intercon) dialog appears:

A. Globally configure the component. At the bottom right of the dialog:

¢ Set Unused Interrupts to Connect to GND.
* Set Master Address Size to 24-Bit (Peripheral 1/0O).

This configures the interconnect for 1/O purposes (the TSK3000A's I/O space uses 24-bit addresses) and guarantees
than unconnected interrupt pins are tied to 0 by default to prevent unexpected interrupts from these.

B. Add the GPIO port to the configuration:
¢ Click the Add Device... button.
The Device Properties dialog appears.
Change the following settings like shown in the figure below:

* Give the port an Identifier (for example GPI0).
* Set the Address Bus Mode to Byte Addressing.
e Set the Data Bus Width to 8-bit.

1-5

Implementing a 32-bit Processor-based Design in an FPGA

Device Properties
Slave Mame and Type
|dentifier |GFIO
Type Peripheral v

Choosge the identifier and type of the device.

Addregs Blodee

Byte Addressing - ADR_D[0] <= ADR_I[0]

Byte f
tranzlated to slave ADR_O[0).

‘wiord addressing will be dependent on the data width:

For 32-bit wide devices master ADR_I[Z] will be translated to
slave ADR_O[0] providing 4-byte words at each address.
For 16-bit wide devices master ADR_I[1] will be translated to
slave ADR_O[0] providing 2-byte words at each address.
For 8-bit wide devices thiz mode iz the same az byte

PIX

Address Base
(oooaoo

Thig iz the base address of the device.
For peripheral in the |/0 space thiz iz a 24-bit hexadecimal
number and for memory devices thiz a 32-bit number,

[Decode Addressing
a =

Controls how many of the address bits are decoded to select
the peripheral. Decoders are generated automatically.

For example, a value of 8 would mean that ADR[3 DownTo
24] [or ADR[23 DownTo 16] for 24 bit] iz compared against the
upper 8-bitz of the Decode Address to select the peripheral.
The smaller the number, the lower the hardware overhead but
the less the number of different devices can be used.

Address Bus Width

addreszing.
|0Bitz - Range =1 w

Thiz reprezents the number of address bitz that are required ta
drive the slave.

Graphical Attributes
4 -~

-

Controls the extra space after the
zlave's bank of ping.

= Oata bus on the slave device.

Uzed Intermupts

Any processor intermupt lines that are not uged by the slaves
will be available az a single Spare_IMT_| pin on the
WB_INTERCON

* Click OK to confirm the new settings.

A summary of the properties you've just set is shown in the Configure dialog.

Notice that its base address is set to OxFF00_0000, whilst in the properties it was set to 000000. The interconnect
block "knows” that all 1/O space in the TSK3000A is located from address OxFFO00000 and higher so it automatically
fills in the 8 most significant bits for you.

* Click OK to close the dialog and to return to the schematic.

Notice that the component now once again has a Wishbone bus on the left side where all pin labels are prefixed with s0 (for
"slave 0”).

4. Connect the GPIO to the Wishbone Interconnect:

* Drag the I/O block so that its Wishbone pins touch the Wishbone pins of the WB_INTERCON component and
CTRL-drag it a back to its place so wires and buses are drawn (like you did in step 2).

Now, there are a couple of pins that are not available on the GPIO port but are available on the Wishbone interconnect:
s0_SEL_0[3..0]. These are byte-selection pins that enable the selection of bytes when hooking up a 32-bit peripheral. Since
we configured the GPIO block as an 8-bit peripheral, these pins are not needed. If they are left unconnected, a warning would
be generated when synthesizing the block. We can suppress this warning by adding a "No ERC” marker to the pin.

5. From the Place menu, select Directives » No ERC

* Click on the offending pins to place the No ERC marker (red cross)
* Press the ESC key to exit placement mode (and return to normal mouse cursor).

1-6

Implementing a 32-bit Processor-based Design in an FPGA

4. Wire the LEDs to the I/O port

Now you need to connect the LEDs to the PAO pins of the general purpose 1/O block and draw a bus between the PAO pins and
the PAI pins. This will allow reading back the value previously written to the port:
1. From the Place menu, select Bus

* Draw the bus (as a bold blue line) from the PAO pins to the LEDs.
* Draw a second bus line from the PAI pins and connect it to the bus you just drew.
* Press the ESC key to exit placement mode (and return to normal mouse cursor).

Wiring functions are also available via the Wiring toolbar:
From the View menu, select Toolbars » Wiring.

Your schematic should now look like this:

. . H
Port Wishbone Wishbone Interconnect TSK3000A 32-Bit RISC Processor
goooocoo paDR.0] STBI _STB_O mil_STE_ 0_sTE_0 ME_STE_0 [
| par. 0] cve _cye_o m_CVe] o_cve_o BE_CYE_0 [
ACE_O _ACK 1 mi_ACE_0 10_ACK 1 ME_ACE _I{f=r
m_ADR_I[23.1] 0_ADR_0[23..0] ME_ADR_OE1.0] [
DAT_O[7.0] s0_DAT 17..0] mil_DAT_0[1.0] 10_DAT IE1.0] WE_DAT IEL 0] [
DAT_IF.0] DAT_0[7.0] m_DAT_IFL0) 0_DAT_0[E1.0] ME_DAT_OEL 0] [
Mepen_SEL_O[Z..0] mi)_SEL_I[..0] 0_SEL_0[..0] ME_SEL_O. 0] (=
WE_T _WE._ i WE 1 0_WE_0 HE_WE_0[f=—
BLE_I _ELE_O m0_CLE_| 0_CLE_O ME_CLE_0|f=—
RST_I _RST_O mil_RST_I 0_RST_O ME_RST_0[f—
m HT_0F1.0] I31.0]
WE_PRTIO
WE_INTERC 0N Current Corfigurstion
HOw Installed
Dabug Hardmrs Insralled
Intemal Hemory © 32 BB
CLE

RST L
TSES000A

5. Connect a clock and a reset button to the TSK3000A

At the bottom, the TSK3000A component has two pins, one for a clock and one for a reset.
Both components need to be added to the sheet and connected to the TSK3000A.

There are two clocks available on the NanoBoard, one is a fixed reference clock of 20 MHz, the other can be set to any
frequency (50 MHz by default). We will use the second clock (because we can set it to a higher frequency which increases the
execution speed of our design!).

1. On the Libraries panel: from the FPGA NB2DSKO01 Port-Plugin.IntLib library, drag the CLK_BOARD component to your
sheet:

* Since we need some extra space, place the clock component on the left side of the sheet.
Now connect the Clock to the TSK3000A using Net Labels:

2. From the Place menu, select Wire:
* Draw a short wire (as a thin blue line) from the CLK | input pin of the TSK3000A.
3. From the Place menu, select Net Label:

¢ Connect the net label to the short wire. Make sure the red cross marker connects to the wire!
* Double-click on the Net Label, select Net Label (xxxx,yyyy) if asked, and give it a name (for example CLK).

@ If you did not place the net label, meaning it is still magnetized to the mouse cursor, you can also press the TAB key to to
access its properties dialog and change its name.

4. Similarly, place a second wire and net label connected to the CLK_BRD component:

* Give this net label the same name CLK so it forms a logical connection to the other CLK net label which is connected to
the TSK3000A.

Implementing a 32-bit Processor-based Design in an FPGA

Placing and connecting the reset (test button) to the TSK3000A is very similar:

5. Once again, on the Libraries panel: from the FPGA NB2DSKO01 Port-Plugin.IntLib library, drag the TEST_BUTTON
component to your sheet:

* Place the Test button below the Clock component

Note that the signal from the button is going low when pressed, while the reset input on the TSK3000A is active at high. Thus,
we need an inverter connected to the reset button:

6. On the Libraries panel: from the FPGA Generic.IntLib library, drag the INV (Generic Inverter) component to your sheet:
e Connect the inverter to the reset button.

7. Finally, wire the inverter to the RST _|I pin, similar to the clock component:
* Use net labels and name them (for example) RST. See steps 3 and 4.

The lower part of the schematic should now look like this:

CLE CLE CLET
@ LU RST RST I

TSEZ0004

™
@ TEST_EUTTON + *>l>0(ﬂ
™Y

6. Connect the right side of the TSK3000A component

On the right side of the TSK3000A, there still is the memory bus. In this example, we do not use it. However, there are a couple
of pins that are used as input and these should not be left unconnected! The ME_ACK | pin needs to be connected to Vcc and
the ME_DAT _|I needs to be connected to ground:

1. From the Wiring toolbar, click the Vec Power Port button with the thin Vcc symbol:

* Do not place it yet, but press the space bar to rotate it to the right orientation.
* Now place the Vcc symbol so it connects to the ME_ACK_| pin.

2. From the Wiring toolbar, click the GND Bus Power Port button with the thick ground symbol:

* Rotate the GND bus to the right orientation.
* Now place the GND bus so it connects to the ME_DAT _| [31..0] bus.

Finally, all unused pins that are left, need to be marked with the No-ERC crosses:
3. From the Wiring toolbar, click the Place No ERC button

* Mark all outputs using No-ERC crosses
The bus on the right side of the TSK3000A should now look like this:

C Processol

aration

1-8

Implementing a 32-bit Processor-based Design in an FPGA

7. Add a soft-JTAG chain to configure and debug the project from your PC

You have almost finished the hardware design now. What we have to do though, is connect the soft-JTAG chain to the
schematic so that we can configure and debug it from the PC. These steps are needed for almost any project. In the libraries, a
JTAG connector is available that represents the pins from the JTAG chain:

1. On the Libraries panel: from the FPGA NB2DSKO01 Port-Plugin.IntLib library, drag the NEXUS_JTAG_CONNECTOR
component to your sheet:

* Mirror the JTAG component (remember: left-click, hold down mouse button, press the X key)
* Place it somewhere on the sheet on the left side and below the existing schematic components

2. On the Libraries panel: from the FPGA Generic.IntLib library, drag the NEXUS_JTAG_PORT component to your sheet:

* Mirror the component
e Connect the JTAG port component to the JTAG component

3. Connect the TRST input to Vcc.

This part of the schematic should look like this:

TLA_HERDE_TD]-t=——i=tTDI

TLAG NEMUS_TDO |<-——=1-ThO
TTAG _MEHTS TCE —i=f TCE
TIAG MERUS THE t=——i= ThiZ s

Voo ——=| TRST

8. Designate all components and save the project

The components on the schematic are still designated as U?. You can can fix this by annotating the design manually, but
fortunately there is a quicker way:

1. From the Tools menu, select Annotate Schematics Quietly...

A popup box informs you there are four designators that require update and asks if you want to proceed.
* Click Yes to proceed.

All components will now have unique identifiers. Time to save your work now! The best way to save everything is to use the
Save All function:

2. On the Projects panel: Click the Workspace button and select Save All.

@ If the option Save All is grayed out, there are no changes that need saving.

1-9

Implementing a 32-bit Processor-based Design in an FPGA

1.2.3 Configure the Project for Xillinx Spartan3 FPGA

You have now finished the schematic. But before we start with the software, the system needs to be configured for the type of
FPGA and other hardware you are using.

To map (of constrain) an FPGA design to its physical implementation (the NanoBoard with its daughter boards and FPGA),
constraint files are created. Constraint files specify implementation detail such as the target device, the port-to-pin mapping, pin
10 standards and so on. A named list of these constraint files forms the configuration of the design project. It is possible to
create multiple configurations (differing sets of constraint files) in case you want to build the project for different hardware
configurations (for example, another type of FPGA).

Creating the configuration for a design on the NB2DSKO01 NanoBoard is simplified through use of an auto-configuration feature.
The required constraint files are automatically determined and added to this configuration, based on the IDs of the hardware
(motherboard, daughter board and peripheral boards) in the system.

For this tutorial example, we will assume the hardware will run on a Xilinx Spartan-3 FPGA device, resident on the daughter
board DB30 which is plugged into the Desktop NanoBoard NB2DSKO1.

Though most of the configuration will be done automatically, for the clock on the schematic, we need to create one constraint file
by hand and add it to the configuration. First the automatic part.

1. Configure the FPGA project (adding constraint files)

1. From the View menu, select Devices View.

2. Make sure the NanoBoard has a live connection:

e Turn the NanoBoard on.
* In the toolbar select your type of connection (Parallel-Port or USB JTAG).
* Enable the checkbox Live at the top-left part of the Devices View.

When the connection has established, the NanoBoard is depicted in the Devices View.
3. Right-Click on the NanoBoard picture and select Configure FPGA Project » project name.PrjFpg.
The Configuration Manager For (project name).PrjFpg dialog appears.

Altium Designer detected the configuration of the connected NanoBoard and has automatically added the necessary
constraint files to the configuration of your project. The configuration manager now shows a list of constraint files as well as
the generated configuration named NB2DSKO01_07_DB30_04 (derived from the NanoBoard and the mounted FPGA
daughter board).

Constraint file Function

DB30.04.Constraint board-level constraint file, describes the FPGA daughter board DB30

NB2DSK01.07.Constraint | board-level constraint file, describes the NanoBoard itself

NB2DSKO01_07_DB30_04 | Interface mapping constraint file that describes the board instances and the daughter board-
_Mapping.Constraint to-motherboard and peripheral board-to-motherboard connector mappings

PByy.nn.Constraint board-level constraint files, describe the peripheral boards on the NanoBoard.

@ Board level constraint files for the NB2DSK01 motherboard, daughter boards and peripheral boards are supplied as part
of Altium Designer’s installation. The mapping constraint file however, is generated on-the-fly as part of the
auto-configuration process, and stored in the same location as the project file itself.

4. Click OK to close the Configuration Manager.

In your Projects panel, a new item called Settings has appeared, being a part of your . PrjFpg project. Take a look and notice
that it contains (links to) the constraint files now being part of your project and of your project configuration.

Implementing a 32-bit Processor-based Design in an FPGA

2. Create and add an extra constraint file for the clock

Now we need to add one extra constraint file manually. This constraint file is needed to define the frequency of the clock on the
schematic. When the project is built, the synthesizer needs this information when it places and routes the hardware. It aims to
do this in such a way that the target clock frequency can be guaranteed.

@ If you do not specify the clock-frequency, the synthesized project will run at an unpredictable clock-speed because the
synthesizer does not know for which frequency it should try to optimize its output.
Add a new constraint file to your project:
1. From the File menu, select New » Other » Constraint File to add a new constraint file to your project.
A new constraint file is added to your project and opened in the editor.

2. Add the following lines to the opened constraint file:

Record=Constraint | TargetKind=Port | TargetId=CLK_BRD | FPGA_CLOCK=TRUE
| | TargetId=CLK_BRD | FPGA_CLOCK_FREQUENCY=30 Mhz
Record=Constraint | TargetKind=Port | TargetId=JTAG_NEXUS_TCK | FPGA_CLOCK=TRUE

TargetId=JTAG_NEXUS_TCK | FPGA_CLOCK_FREQUENCY=1 Mhz

Record=Constraint TargetKind=Port

Record=Constraint TargetKind=Port

The first two constraint records address the CLK_BRD component on the FPGA design and set it to a target speed of 30
MHz. With this FPGA design, the synthesizer can safely reach this target when placing and routing the design. Later on you
may try other frequencies to see if you can increase the performance. If you specify the clock frequency too high, the
synthesizer may fail and quit because it concludes it cannot reach the target frequency.

The other two constraint records set the JTAG_NEXUS_TCK component (the clock of the JTAG component) to 1 MHz.
3. Save the constraint file in your project directory and give it a meaningful name, for example Clock board.Constraint.
The constraint file we just created is now part of the project, but not yet part of the project configuration:
4. On the Projects panel: right-click on the .PrjFpg file and select Configuration Manager...

The Configuration Manager For (project name).PrjFpg dialog appears.

* Assign the new constraint file to the configuration by checking the selection box in the column that represents your
configuration (currently only one column is visible because there is only one configuration at this moment.)

The dialog should now look like this:

Configuration Manager For FPGA_Processor_32Bit.PrjFpg

Constraint Files Configurations

Constraint Filename: MNB2DSKO1_07_DB30_04
DE30.04.Canstraint
MB2D5K01_07_DB30_04_Mapping Constraint
‘NE2DSKD1.07.Conshaint

PBO1.04. Constraint

PR02 06 Canstraint

PB03.05 Constraint

< <!

(((H
—

Configurations Add... Constraint Files Force Columns Into View

* Click OK to confirm the new configuration.

Implementing a 32-bit Processor-based Design in an FPGA

1.2.4 Configure Memory and Peripherals

Next, we need to configure memory for the TSK3000A processor core. In other words, for the TSK3000A processor core we
need to define which memory is available and at which addresses.

1. Configure memory for the TSK3000A

1. Right click on the TSK3000A component and choose Configure Processor Memory.
The Configure Processor Memory dialog appears, showing a graphical representation of the memory for the TSK3000A.
According to the dialog, a single block of 32768 (32k) bytes ROM is allocated to the processor. We will change that into
Volatile RAM.

@ In fact, all "/ROM” on an FPGA is preloaded block RAM. It is possible to overwrite contents in "ZROM” memory during
program execution in case of, for example, a malicious pointer. So, although we will continue to call it "/ROM” by analogy
with a hardware processor, be aware that the "ZROM” memory is rather non-volatile RAM.

2. In the lower pane, double-click the entry with the ROM-type memory.

The Processor Memory Definition Dialog appears:

Physical Memory Block

Mame Addiess Base

U3 000000000

The unigue identifier of this memory dewvice. Thiz iz the proceszor's view of where the
When the FPGA, project it compiled these memary appears in the address space.
memory details will be passed to the embedded

software project. The size can be specified as a decimal or hex
Thiz identifier will also be used to uniguely walue,

identify the autput HEX file. Examples: 10000, 010000, Tk, Bk, TM

Mames cannat contain spaces.

Type Size

Memory Typed RaM - Yolatile ~ 32768

This represents the amount of memory that is

] T 0 - Fastest

emory Type sted b available to the processor from this device.
Choose the tppe and relative speed of the The size can be specified as a decimal or hex
memory device. value.

The linker will use the relative speed settings of
the different memories to ty and optimize overal Examples: 10000, 0x10000, 1k, B4k, 1k
perfoimance.

e Change the memory’s Type to RAM - Volatile.
* Leave the memory’s base address set to 0.
* Click OK to confirm the new settings.

You return to the main Configure Processor Memory dialog.
3. Still in the main dialog, enable the option hardware.h (C Header File).

This will generate a special file named hardware.h in your embedded project once you start building the software. This file
contains the actual addresses of memory and peripherals so we can use them in the software.

The dialog should now look like this:

Implementing a 32-bit Processor-based Design in an FPGA

Configure Processor Memory. El[z‘

Memory Architecture Device Memory

OxFFFF_FFFF OxFFFF_FFFF
OxFFFF_FFFF OxFFFF_FFFF

Processor 1/0 Space
10 Port
of the processor

0xFFOO_0000 O0xFFOO_D0O00
0xFEFF_FFFF

OxFEFF_FFFF

External-Memory Space
0x0100_0000

0x0000_7FFF
0x0100_0000,

0x00FF_FFFF

Internal-Memory u3
Wihere the
boot code resides

Ax0000_0000 0x0000_0000
0x0000_0000 0x0000_0000

MName Address Size Type Internmupts

Generate following files inta the subproject(s) at FPGA Project compilation
[] hardware. asm [&ssembly File] hardware.h [C Header File]

[Set to Default H Import From Schemalic] Conligure Application Memury][Configure Penpherals] I akK ” Cancel

4. Click OK to confirm all settings and to close the main dialog.

2. Configure the peripherals

Something similar must be done for the peripherals. We have defined the general purpose I/O block (GPIO) in the Wishbone
interconnect component, which must be made known to the TSK3000A processor core and the embedded project.

1. Right-click on the TSK3000A component once again and select Configure Processor Peripheral...
The Configure Peripherals dialog appears.

2. Simply click on the Import From Schematic button.
* You are asked whether to delete existing peripherals. Click Yes.

A dialog appears that shows the names of all peripherals, sorted by the Wishbone interconnect they are defined in. Of
course, only the GPIO block is listed which is defined in the Wishbone interconnect with designator U2.

3. Click on the Do not import cell associated with the interconnect’s name (U2) and
change it to Import.

All sub-entries are changed to import as well.
4. Click OK to confirm the new settings and to return to the main dialog.

The GPIO peripheral is now visible in the Defined Peripheral Devices view.
5. Make sure the option hardware.h (C Header File) is enabled.

6. Click OK to confirm all settings and to close the main dialog.

You now really have finished the hardware part. Save your project with the Save All function and continue with the next part: the
software project.

Implementing a 32-bit Processor-based Design in an FPGA

1.3 Create the Software

1.3.1 Create and Save a New Embedded Project

1.

From the File menu, select New » Project » Embedded Project.
A new project named "Embedded_Project1.PrjEmb” is added in the Projects panel.
From the File menu, select New » C Source document.

A new C source document is added to the Projects panel named "Source1.C”.
This new document is part of the embedded project project.

To save the new project, click the Workspace button and select Save All:

The Save [...] As dialog appears.

It may be convenient to store the embedded project and its sources in a subdirectory of the project directory Getting
Started you created earlier for the FPGA project.

* Browse to the Getting Started directory and create a subdirectory Embedded.
* Save the empty C source file and give it a proper name, for example ledsl.c
Now you are asked to save the embedded project itself:

Save the embedded project and give it a proper name, for example FPGA_Processor_32Bit_LEDs.PrjEmb (no
spaces!).

1.3.2 Configure the Embedded Project

1. Assign the software project to the TSK3000A processor core

The software we will create in this embedded project, must run on the TSK3000A processor core on the FPGA design.
Therefore, the hardware FPGA project and the Embedded project need to be combined: we need to assign our software project
to the processor soft-core.

Before we can build the entire project,

1.

In the Projects panel, select the Structure Editor radio button.
The Projects panel has switched to the structure editor view.

In the Projects panel, right-click on the name of the . PrjFpg project (not the embedded project!) and select Compile
FPGA project project_name.PrjFpg.

The schematic document BlinkingLED.SchDoc appears in the overview and, beneath that, the TSK3000A becomes visible.
Now drag the embedded project . PrjEmb into the TSK3000A's symbol.

Verify the old and the new situation:

Projects - Projects v X
Workspacel. Danbahk - Workspacel.Darvwik -
FPGA_Processor_32Bit PriFpg
() File Views (%) Structure Editar () File View (%) Stucture Editor
BF 3 FPGA_Processor_32Bit.PrjFpg BF 3 FPGA_Processor_32Bit.PrjFpg
=1 L2 BlinkingLED.5chDoc =4 BlinkingLED.5 chDoc
1F U3[TSK30008) = 1F 13 [T5K30004]

.ull] FPGA_Processor_32Bit_LEDs. PriEmb .|.I.|.|] FPGA_Processor_32Bit_LEDs_Prjl

4. To switch the Projects panel back to normal view, select the File View radio button.

Notice that the file hardware.h has been added to your embedded . PrjEmb project.

Implementing a 32-bit Processor-based Design in an FPGA

2. Configure the embedded project and configure application memory

The embedded software needs to be compiled for the TSK3000A on the schematic. So first of all we have to specify to the
embedded project for which device the project should be compiled. Then we will make some modifications in the default project
settings. Finally, we need to tell the compiler how the software can access the memory we defined for the TSK3000A.

1. Right-click on the embedded project . PrjEmb and select Project Options...

The Options for Embedded Project .PrjEmb dialog appears.

Options for Embedded Project FPGA_Processor_32Bit_|LEDs.PrjEmb

Compiler Options | Files With Options | Parameters | Configure Memary | Sections/Peserved Areas

Gl = T

Build Options =]General
#- Processor Save project documents before compile v
#1- C Compiler Keep temporany files that are generated during a compile
- Assembler Stop build process on error v
) Linker Use absoluts path names in generated makefile
i+ Device Software Framework Use additional make oplians
- POSIX Configuration
Use user-defined makefils
E Directories
Executable files path $HPRODDIRC3000Mbin
Include files path
Library files path
Library source files path HPRODDIRN\3000Mbvsre

Debug search path

Tulput dircctols Toeteal ol it eat drectol

Description
This aption enly has effect when the global option on the Teols »> Embedded Freferences dialog is disabled.
Select this option to save changed documents, so the most recent files are used for a compile,

¢ Set Ta Installation Defauits_JD

* First make sure that all default settings are set: click the Set To Installation Defaults button.

* Inthe Device field, expand the Altium entry, then expand the TSK3000 (core) entry and select the TSK3000A
(derivative).

¢ Type a name for the Output directory, for example: Output.

2. Expand the Linker entry and select Stack/Heap:

* Set the Stack size to, let’s say, 4k so it fits entirely in the internal memory of the TSK3000A processor core on the FPGA.
* Delete the value at Heap size (we do not need any heap, not even a heap of 0 bytes!)

We have equipped the TSK3000A processor core on the schematic with 32k Volatile RAM. Now we need to configure the
embedded project as well, so the compiler ’knows’ how the software can access this memory. We need 16k of ROM as well
as 16k of Volatile RAM which both need to be mapped onto the device memory of the TSK3000A.

3. Open the Configure Memory tab.

The Memory Architecture shows the physical memory present on the TSK3000A. The Device Memory shows the memories
that are defined for the TSK3000A processor core on the schematic. Finally, the Application Memory shows how the
software can access these memories.

At this moment, the TSK3000A's device memory has already been imported, but the picture still represents a default
configuration for the Application Memory showing xrom and xram. The red color indicates the memories are incorrectly
mapped onto the Device Memory. You can either change the default Application Memory or delete it and create a new
mapping. Let’s do the latter:

4. Right-click in the Application Memory column and select Delete All (on layer).
The Application Memory column is now empty and blue, indicating available space for mappings.
5. Right-click in the empty Application Memory column and select Add Memory...

The Processor Memory Definition Dialog appears.

Implementing a 32-bit Processor-based Design in an FPGA

Logical Memory Block

Mame Address Base

0+00000000
The unique identifier of this memory device. Thiz is the processor's view of where the
‘when the FPGA project is compiled these memaoiy appears in the address space.
memory details will be passed to the embedded
software project. The size can be specified as a decimal or hex
This identifier will also be used to uniquely wvalue
identify the output HEX file. Examples: 10000, 0x10000, Tk, Bdk, Thi

Mames cannat cantain spaces.

Type Size

Memory Type ~

M T 0 - Fastest This represents the amount of memory that is
smory Type astes bt available to the processor from this device.

Choose the tppe and relative speed of the The size can be specified as a decimal or hex

memory device. wvalue.

The linker will use the relative speed settings of
the different memaries to try and optimize overal Examples: 10000, 0x10000, 1k, B4k, T
perfaimance.

LCancel

* Change the memory’s Name to something more meaningful: irom.
e Verify that the memory’s Type is set to ROM.

* Change the memory’s Size to 16k.

* Leave the memory’s base address set to 0.

* Click OK to confirm the new settings.

You return to the Options for Embedded Project .PrjEmb dialog.
6. Once again, right-click in the Application Memory column (or in the memory list below) and select Add Memory...

Again, the Processor Memory Definition Dialog appears.

* Change the memory’s Name to something more meaningful: iram.

* Verify that the memory’s Type is set to RAM - Volatile.

* Change the memory’s Size to 16k.

* Change the memory’s Address Base to 16k (since the first 16k were used by the ROM).
* Click OK to confirm the new settings.

The Application Memory now shows the iram and irom, correctly mapped onto the device memory. The green color
indicates that there are no memory conflicts. The dialog should now look like this:

Implementing a 32-bit Processor-based Design in an FPGA

Options for Embedded Project Embedded_Project1.PrjEmb

Compiler Options | Files ‘with Options F‘alametersi Configure Memary iSectionsfHaserved Areas

Memory Architecture Device Memory Application Memory

0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF
OxFFFF_FFFF OxFFFF_FFFF

Processor 1/0 Space
0 Port y 0%0000_7FFF
of the processor /

0xFFO0_0000 0xFFO0_0000

OxFEFF_FFFF
iz D"“”—f-{ EE xram (Volatile RAM)
.’.
./
Extemnal-Memory Space /
Ox@100_0000 0x0000_<000

7 0x0000_3FFF
/

0x0000_TFFF

0x0100_0000

0x00FF_FEFF y irom (ROM)

Internal-Memory £ u3 #

Where the

boot code resides
Ox0000_0000 0x0000_0000 0x0000_0000
/

0x0000_0000 0x0000_0000 0x0000_0000

Name Address Size Type Internipts

iom 0x00000000 18k ROM

Automatically import wheh compiling FPGA project

7. Click OK to confirm all settings and to close the main dialog.

Save your project with Save All.

1.3.3 Write the software

The hardware project and the software project are now properly configured. Peripherals and memory for the TSK3000A can now
be accessed with the software.

It is time to write the program that causes the LEDs on the NanoBoard to count. Go back to your C source file and enter the
following code:

#include <stdint.h>
#include "hardware.h”

volatile uint8 t * const leds = (void *)Base_ GPIO;

void main(void)

{
*leds = 0; // Initialize the LEDs to all OFF
for (;i)
{
(*leds)++;
for (int delay = 0; delay < 5000000; delay++)
{
__nop(); // Two underscores
}
}
}

Note the definition of Base_GPI0. That definition originates from the generated hardware.h file and describes the base
address of the general purpose 1/O port as defined in the Wishbone interconnect.

Save your project!

1-17

Implementing a 32-bit Processor-based Design in an FPGA

1.4 Build the Project

Now, the whole project has been finished and it is ready to be built. Make sure the NanoBoard is switched on and properly

connected to your PC.

1. From the View menu, select Devices View.

Below the Spartan3 symbol, there is a wide drop down list.

2. If not selected, select the FPGA_Processor_32bit / NB2DSKO01_07_DB30_04 project / configuration (or the name that
corresponds to the names you gave to your project and project configuration).

3. Click on the Program FPGA button on the right side of the Devices view.

The project is built in several stages. This may take quite some time, especially the stage of synthesizing the hardware

design is time consuming.

After the project has been built successfully, it is loaded into the FPGA on the NanoBoard and the LEDs start counting in a

binary way.

A Results Summary dialog opens, showing the devices now programmed in the FPGA as well as timing characteristics.

Troubleshooting

Error

Possible cause

In the Devices view, no project is visible.

Right-click somewhere in the Devices view and select Add »
XC3S1500-4FG676C (FPGA_projectname /| configurationname).
Verify and use the FPGA number on your FPGA daughter board.

In the Devices view, the Spartan FPGA is not visible.

In the Devices view, right-click on the FPGA device and select
Change » XC3S1500-4FG676C (FPGA_projectname /
configurationname).

Verify and use the FPGA number on your NanoBoard.

See step 5 in section 1.2.1, Create and Save a New FPGA Project
and step 3 in section 1.2.3, Configure the Project for Xillinx Spartan3
FPGA.

LSL syntax error: heap "heap” has zero or negative
minimal size

See section 1.3.1, Create a new Embedded Project and Configure it.
Make sure you deleted the value for heap size.

No live connection with the NanoBoard or Failed to
program FPGA

Make sure the NanoBoard is turned on
Make sure in the Devices view, the option Live is enabled

Sometimes loading via a parallel connection fails. Try again or con-
nect the NanoBoard via a USB cable.

Implementing a 32-bit Processor-based Design in an FPGA

Revision History

Date Version No. Revision
12-Nov-2007 1.0 Initial Release
16-May-2008 1.1 Converted to A4

Software, hardware, documentation and related materials:
Copyright © 2008 Altium Limited. All Rights Reserved.

The material provided with this notice is subject to various forms of national and international intellectual property protection, including but not
limited to copyright protection. You have been granted a non-exclusive license to use such material for the purposes stated in the end-user
license agreement governing its use. In no event shall you reverse engineer, decompile, duplicate, distribute, create derivative works from or in
any way exploit the material licensed to you except as expressly permitted by the governing agreement. Failure to abide by such restrictions may
result in severe civil and criminal penalties, including but not limited to fines and imprisonment. Provided, however, that you are permitted to
make one archival copy of said materials for back up purposes only, which archival copy may be accessed and used only in the event that the
original copy of the materials is inoperable. Altium, Altium Designer, Board Insight, DXP, Innovation Station, LiveDesign, NanoBoard, NanoTalk,
OpenBus, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective logos are trademarks or registered trademarks
of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their respective owners
and no trademark rights to the same are claimed.

	1.1 Introduction
	1.2 Create the Hardware Design
	1.2.1 Create and Save a New FPGA Project
	1.2.2 Draw the Hardware Schematic
	1.2.3 Configure the Project for Xillinx Spartan3 FPGA
	1.2.4 Configure Memory and Peripherals

	1.3 Create the Software
	1.3.1 Create and Save a New Embedded Project
	1.3.2 Configure the Embedded Project
	1.3.3 Write the software

	1.4 Build the Project

