
Legacy documentation
refer to the Altium Wiki for current information

CR0117 (v2.0) March 13, 2008 1

TSK80x MCU

Summary
Core Reference
CR0117 (v2.0) March 13, 2008

The TSK80x is a fully functional, 8-bit microcontroller, incorporating the von Neumann
architecture. This core reference includes architectural and hardware descriptions,
instruction sets and on-chip debugging functionality for the TSK80x family.

The TSK80x is a fully functional 8-bit embedded processor which is instruction set compatible with the Zilog Z80CPU1. The
TSK80x supports hardware interrupts, halt and wait states for low speed memory and I/O devices.
Important Notice: Supply of this soft core under the terms and conditions of the Altium End-User License Agreement does not
convey nor imply any patent rights to the supplied technologies. Users are cautioned that a license may be required for any use
covered by such patent rights.

Features
• Control Unit

− 8-bit Instruction decoder

• Arithmetic Logic Unit

− 8-bit arithmetic and logical operations

− 16-bit arithmetic operations

− Boolean manipulations

• Register File Unit

− Duplicate set of both general purpose and flag registers

− Two 16-bit index registers

• Interrupt Controller

− Three modes of maskable interrupts

− Non-maskable interrupt

• External Memory Interface

− Can address up to 64KB of Program memory

− Can address up to 64KB of Data memory

− Can address up to 64KB of external I/O peripheral devices

Available Devices
Both standard and debug-enabled (OCD) versions of the microcontroller are available – the TSK80A and TSK80A_D
respectively.
Note: Unless specified otherwise, the feature/description described for the standard version of the controller applies to the
debug-enabled version in exactly the same way.
These devices can be found in the FPGA Processors integrated library (FPGA Processors.IntLib), located in the
\Library\Fpga folder of the installation.

1 The TSK80A is instruction set compatible. The TSK80A_D is instruction set compatible with the exception of instruction LD H, H. This opcode
is reserved and is used to represent a software breakpoint.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

2 CR0117 (v2.0) March 13, 2008

Architectural overview

Symbols

Figure 1. TSK80x family symbols

Pin Description
The pinout of the TSK80x is described in Table 1 below.

Table 1. TSK80x pin description

Name Type Polarity/Bus size Description

CPU Control Signals

CLK I Rise External system clock (used for internal clock counters and all other
synchronous circuitry).

RST I High External system reset. A High on this pin for at least one clock cycle
while the external system clock (CLK) is running resets the device.

HALT_ST O High A High state on this pin indicates that the CPU has executed a Halt
instruction and is awaiting either a non-maskable or maskable interrupt
before operation can resume.

WAIT_ST I High A High on this pin indicates to the CPU that the addressed memory or
I/O device is not ready for a data transfer. The CPU continues to enter a
wait state as long as this signal is active.

INT I High Maskable Interrupt Request. This signal is generated by the I/O device.
The CPU honors a request at the end of the current instruction, if the
internal software-controlled interrupt enable flip-flop is enabled.

NMI I Rise Non-maskable Interrupt Request. This signal has a higher priority than
INT and is always recognized at the end of the current instruction,
irrespective of the status of the interrupt enable flip-flop, and forces the
CPU to restart at address 0066h.

System Control Signals

M1 O High This signal is used to distinguish between a memory fetch operation and
a normal data memory read operation. When active together with
MEMRD, it indicates that the current machine cycle is the Opcode fetch
cycle of an instruction execution

TRI O Low Tri-state bus control. This signal is used to enable off-core tri-state
buffering for the MEMWR, MEMRD, SFRWR and SFRRD signals.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 3

Name Type Polarity/Bus size Description

MEMWR O High This signal indicates that the CPU data bus holds valid data to be stored
at the addressed memory

MEMRD O High This signal indicates that the CPU wants to read data from memory and
memory should use this signal to gate data onto the CPU data bus

SFRWR O High This signal indicates that the CPU data bus holds valid data to be written
to the I/O device

SFRRD O High This signal indicates that the CPU wants to read data from an I/O device
and the device should use this signal to gate data onto the CPU data bus

Bus Control Signals

REQ I High This signal has a higher priority than NMI and is always recognized at
the end of the current machine cycle. When this signal is active, the CPU
address bus, data bus and associated control signals are forced to go to
a high-impedance state, so that other devices can take control of these
lines.

ACK O High When this signal is active, it indicates to the requesting device that the
CPU address bus, data bus and associated control signals have entered
their high-impedance state and it can now take control of these lines.

Data Bus Signals

DATA_TRI O Low Data bus tristate control

DATAO O 8 Data bus output

MEMDATAI I 8 Data bus input from external memory space

SFRDATAI I 8 Data bus input from external peripheral I/O space

Address Bus Signals

ADDR_TRI O Low Address bus tristate control

ADDR O 16 Address bus output. This 16-bit signal specifies I/O and memory
addresses to be accessed. The bus is an input when the external master
is accessing the on-chip peripherals

Memory Organization
The TSK80x has a 16-bit address bus capable of addressing up to 64KB of memory space. This same memory space is used to
store both code (program) and data. The microcontroller does not distinguish between Program and Data memory space; if a
different space is required for Data and Program memory, separate external memory blocks must be used. When separate
memory blocks are used, an additional external device must be used in order to switch between the two.

The TSK80A can also communicate with external peripheral devices. To address I/O ports, it uses the same 16-bit address bus,
so the addressable I/O space is also 64KB. However, full access in both directions is only available within the first 256 bytes
(0000h – 00FFh).

The memory and I/O space are different. This is described in more detail in the following sections.

Memory Map
The TSK80x can address up to 64KB of memory space, from 0000h to FFFFh. After a reset, the CPU starts program execution
from location 0000h. From this location, the first instruction Opcode is fetched and executed.

The lower part of the Program memory includes a non-maskable interrupt (stored at address 0066h), a maskable interrupt
vector in mode 1 (stored at address 0038h) and all restart vectors.

When the CPU reads data from memory, the MEMRD signal goes to an active state (High) and then memory is read. When an
instruction Opcode is read, an additional signal, M1, goes into active state (High). Controlling the state of M1 gives information
on what kind of memory access is being processed.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

4 CR0117 (v2.0) March 13, 2008

The memory map is illustrated in the figure below.
 FFFFh

0000h

8000h

4000h

C000h

FFFFh

0000h

8000h

4000h

C000h

Program/Data memory External I/O ports

00FFh

256 base port (full access)

Figure 2. Memory map

Memory Fetch Operation
Signal M1 is used to distinguish between normal data read from memory and an instruction fetch. It goes to an active state
(High) on the rising edge of the clock in cycle 1 when the instruction fetch cycle starts and it returns to invalid state on the rising
edge of the clock in cycle 2, when the fetch cycle finishes.

In summary, a memory fetch operation is distinguished from a memory read by the active state of signal M1.

For slow memory devices, the CPU can add additional cycles and wait on data.

External I/O Ports Space
The TSK80x can address up to 64KB of external I/O space, from 0000h to FFFFh. Only ports addressed in the lowest 256 bytes
of this space are fully accessible (both read and write). Addressing of ports above this range is made possible by special
features inherent to the execution of the input and output instructions.

When addressing I/O space, all signals on the address bus have an active state, but only the lowest eight are valid (equating to
256 bytes). One of the general purpose registers is passed on the top half of the address bus at the same time. This behavior
makes it possible to utilize all 64KB of I/O space.

During instructions IN A,(n) and OUT (n),A, immediate data n is passed on to the low order byte of the address bus and the
contents of the Accumulator are passed on to the high order byte. This feature gives free access to any port in the entire 64KB
I/O address space, but only when reading data. When writing data, the data that is to be written (contained in the Accumulator
and subsequently put onto the data bus) is the same value that is put onto the high order byte of the address bus. The range of
addressable space is therefore limited by the value of the data that is to be written. For example, if the data to be written is FFh
(stored in the Accumulator), you could conceivably use any value in the range 00h – FFh for n and hence write to any port in the
I/O space (0000h – FFFFh). However, if the data to be written from the Accumulator was 20h, then the addressable I/O space
would be limited to the range 0000h – 20FFh.

The instructions IN r,(C) and OUT (C), r are more flexible, but they have limitations too. In these instructions, the contents of
register C are placed on to the low order byte of the address bus and the contents of register B on to the high order byte.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 5

Hardware Description

Block Diagram
Figure 3 shows the block diagram for the TSK80x. The processor is essentially divided into four sub-blocks:

• the main State Machine (FSM)

• the Decoder

• the ALU

• the Internal Registers.

Figure 3. TSK80x block diagram

Finite State Machine (FSM)
The processor’s state machine has two main functions – it controls the processor’s control outputs during an instruction cycle
and also manages exception vectors (interrupts, halt and external bus request).

The state machine controls all access to external memory and peripheral devices. It also ensures that the current instruction has
completed before an exception is processed and executed.

Figure 4 summarizes the states involved in an instruction cycle and the transitions between each.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

6 CR0117 (v2.0) March 13, 2008

Figure 4. TSK80x main state machine: Instruction cycle

The IDLE state is the initial state, entered upon reception of an external reset (RST). As can be seen, the actual instruction
cycle consists of the following three states (stages):
• FETCH – the processor loads a new instruction byte from memory

• DECODING – the processor interprets the instruction byte loaded during the FETCH stage, determines if it is a prefix byte
and, if it is, returns to the FETCH state to load the rest of the instruction. After the full instruction has been loaded, the
processor enters the ACTION state, to start the execution of the instruction

• ACTION – the processor activates the relevant control signals to complete the instruction. In the case of a multi-clock cycle
instruction (e.g. an addition between two registers) the state machine increments the cycle counter, activating the relevant
control signals as required.

Decoder
Where the state machine controls external access and general data flow inside the processor, the Decoder controls all of the
instruction-specific internal control signals. The state machine passes the value of a newly-loaded instruction to the Decoder.
The Decoder uses this value to generate the required internal control signals.

Upon entering the ACTION state, the Decoder sends the number of cycles required for the instruction, back to the state
machine. The state machine increments its internal cycle counter until it reaches this value, after which it knows that the current
instruction has completed and it can FETCH the next instruction from memory. Figure 5 summarizes the interaction between the
state machine and the Decoder.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 7

Figure 5. FSM-Decoder interaction in the TSK80x

ALU
The Arithmetic Logic Unit (ALU) is involved in every operation on the data. The CPU executes the following operations:

• Add 8-bit data with or without Carry flag

• Subtract 8-bit data with or without Carry flag

• Increment and decrement 8-bit data

• Logic operation AND, OR, XOR on 8-bit data

• Compare 8-bit data with Accumulator

• Shift, rotate 8-bit data with or without Carry flag

• Set, reset or test any bit in 8-bit data

• Convert Accumulator into packed BCD

• Negate Accumulator (0 - A)

• Logic operation NOT on data in Accumulator

• Add 16-bit data with or without Carry flag

• Subtract 16-bit data with Carry flag

• Increment and decrement 16-bit data.

The result of all 8-bit operations is stored in the Accumulator and reflected in the status of various flags in the flag register (F).

For 16-bit operations, the result is stored in register HL (which acts as the Accumulator). For instructions with an Opcode prefix
of DD or FD, the result is stored in the IX and IY registers respectively.

The Flag register (F) tests the following conditions:

• S - sign (first bit of result)

• Z - zero (is set (1) if the result of the operation is 0)

• H – half carry (is set (1) if the add or subtract operation produced a carry into or a borrow from bit 4 of the result

• P/V – parity/overflow (is set (1) if the result of the operation is even or produced an overflow)

• N – add/subtract (is set (1) if last executed operation was a subtract

• C – carry (set (1) if the operation produced a carry from the MSB of the result.

The Flag register can also be changed by other instructions not connected with logical or arithmetic operations. In such cases,
the conditions tested as listed above may not necessarily apply. Examples are block transfer instructions or set carry flag
instructions (SCF) that only write to the Carry flag.

Registers
All registers in the TSK80x can be changed under program control. They can be split into three groups, as described below.

The first group consists of two duplicate sets of 8-bit registers - base and alternative. Only one set can be used at a time.
Switching between sets is executed by software (instructions EXX and EX AF, AF’). Both sets in this group consist of the
following registers:

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

8 CR0117 (v2.0) March 13, 2008

• A (Accumulator)

• F (Flag register)

• B, C, D, E, H and L (General Purpose registers)

Although they are 8-bit registers, they can be treated as 16-bit registers. In this case, registers can be joined in the following
pairings: B and C as BC; D and E as DE; H and L as HL; A and F as AF.

The second group consists of five registers with assigned functions. These are:

• Index registers (IX and IY) - used in index addressing mode

• Stack Pointer (SP) – used to store address on top of Stack

• Program Counter (PC) – used to store address of next instruction to be executed

• Interrupt register (I) – used to store the interrupt address and the device requesting the service

The third group consists of two Interrupt Status registers (IFF1, IFF2) and the Interrupt Mode register (IM). The Interrupt Status
registers store information as to whether a maskable interrupt request should be serviced or not. Its state can be changed by
the Enable Interrupt instruction (EI) and Disable Interrupt instruction (DI). The actual state can be tested only indirectly with the
results of executed instruction LD A,I which changes the flag P/V depending on the state of the register IFF2. Additionally, when
servicing non-maskable interrupts, the state of register IFF1 is stored into IFF2 and IFF1 is reset (disable maskable interrupts).

The RETN instruction is used for copying the contents of IFF2 back into IFF1 (setting IFF1 back to its original state, prior to the
non-maskable interrupt being serviced).

The IM register is less flexible (no way to test its value). Its state can be set only by execution of instructions IM0, IM1, or IM2.
Each one sets a different interrupt service mode.

The B, C, D and E Registers
The B, C, D and E registers are 8-bit registers set to 00h after a reset of the processor. They are used as general purpose
registers to store data. In some of the instructions, they are connected in a pair (B to C and D to E) and are then treated as 16-
bit registers. As a 16-bit register, they can contain a 16-bit data value, be used as an address register (storing an address of a
location in memory space), or act as a transfer counter (BC pair only).

The H and L Registers
The H and L registers are 8-bit registers set to 00h after a reset of the processor. They are used as general purpose registers to
store data and as a 16-bit register pair to store the address of an operand.

As an address register, HL is more flexible than register pairs BC and DE. Almost all operations appear in addressing mode
using register HL. In transfer data operations, the HL register is used as the source or destination address register. For 16-bit
arithmetic operations, HL is used as a register that stores the result of an operation (acting as the Accumulator).

The IX and IY Registers
The Index registers (IX and IY) are 16-bit registers set to 0000h after a reset of the processor. They mainly store addresses
used in indexed addressing mode but can also be used as general purpose registers. They can be used the same way as
register HL but not in instructions which operate on 8-bit data. (There are no instructions that operate on the high or low order
bytes of registers IX and IY only).

Program Counter (PC)
The Program Counter (PC) is a 16-bit wide register that is set to 0000h after a reset of the processor. Its value is incremented in
every FETCH cycle after reading the instruction Opcode.

Stack Pointer (SP)
The Stack Pointer (SP) is a 16-bit register set to 0000h after a reset of the processor. It is automatically incremented at the
beginning of execution of instructions POP or RET and is decremented in instructions PUSH, CALL and RST. The SP always
contains the address of the last stored data on the external memory stack.

Interrupt Register (I)
The Interrupt register (I) is an 8-bit register set to 00h after a reset of the processor. It stores the basic addresses of the
interrupts vector table.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 9

In an interrupt acknowledge cycle, in interrupt mode 2, its value (placed in high order byte of address bus) along with data from
the serviced device (placed in low order byte of address bus) comprises the address of the first instruction of the interrupt
service routine.

Bus Request Cycle
On the rising edge of the last clock cycle of every machine cycle, the state of signal REQ is tested. If it is Low, no special action
is made. If it is High, the CPU disconnects itself from all buses.

Signal ACK is set to High to show other devices that the processor is disconnected from the system and other devices can take
control of all lines. The rest of the signals are set to a non-active state. The exception is signal HALT_ST which does not change
state (if it was High it will remain High, if it was Low, it will stay Low).

The CPU remains in this state, only testing the state of signal REQ (on every rising edge of the clock). When the tested signal
changes to Low, the CPU leaves this suspended state and resumes program execution from the next instruction. If the CPU
was in the middle of executing an instruction before it was disconnected from the bus lines, it will not resume execution of this
same instruction, rather it will resume by executing the subsequent instruction. On the falling edge of the clock, signal ACK (at
the same time finding a Low on signal REQ) is set to Low.

The REQ signal has higher priority than interrupts and, during a bus request/acknowledge cycle, the processor cannot be
interrupted.
Note: Off-core tristate buffers can be wired into a design in order to place bus signals in a high impedance state. Tristate control
signals are provided for this very purpose:

• ADDR_TRI for the ADDR bus

• DATA_TRI for the DATAO, MEMDATAI and SFRDATAI buses

• TRI for the MEMWR, MEMRD, SFRWR and SFRRD lines.

Halt Acknowledge

Figure 6. Halt acknowledge

Note: sample - point at which signal is tested.

The result of the execution of the HALT instruction is that the CPU goes into a loop, which looks as though the NOP instruction
is continuously being executed. The difference is that the CPU does not fetch the next instruction. Instead, the Program Counter
does not change its value and the HALT_ST signal is set to High (on the falling edge of the fourth clock cycle in the machine
cycle in which the HALT instruction is executed).

The processor does not take any action. It tests interrupt signals on the rising edge of the fourth clock cycle in each machine
cycle. The processor can be in this state without any time restriction, but if the CPU starts to service an interrupt, this cycle is
suspended and the CPU returns to normal work.

Hardware Reset (RST)
All registers are synchronously reset by the external reset signal (RST). After a reset, all bits in the registers are set to zero. The
processor’s main state machine is put into the IDLE state, maskable interrupts are masked and all external control signals go to
an inactive state.

The processor stays in this state as long as a reset condition occurs. After reset (when signal RST changes to Low), the CPU
starts executing an instruction fetch. The first instruction is fetched from address 0000h.

Interrupts
The TSK80x microcontroller has two interrupt request inputs – INT (maskable interrupt) and NMI (non-maskable interrupt).
Interrupt service processing depends on the type of interrupt that was detected.

Non-Maskable Interrupt
The non-maskable interrupts cannot be disabled by program control and therefore will be accepted at all times by the CPU.
They have a higher priority than maskable interrupts and are serviced first when both NMI and INT active signals are received at
the same time.

CLK
HALT_ST

NMI
sample

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

10 CR0117 (v2.0) March 13, 2008

After an interrupt is detected, the processor makes a special machine cycle (shown in Figure 7). This cycle is similar to the
FETCH cycle but no data is read. The CPU then pushes the contents of the Program Counter onto the stack and makes a jump
to address 0066h (the first instruction of the non-maskable service routine should be placed at this location).

In addition, maskable interrupts are disabled, preventing any further interrupts during the servicing of the non-maskable
interrupt. The enable status of maskable interrupts is stored in the Interrupt Enable flip-flop IFF1. When a non-maskable
interrupt is accepted, this flip-flop is reset (0), disabling maskable interrupts from being accepted. Its previous state (enabled or
disabled) is stored however, enabling the interrupt state prior to the non-maskable interrupt to be restored after the current
interrupt has been serviced. The state of the maskable interrupt is stored by copying the contents of interrupt enable flip-flop
IFF1 into IFF2.
Note: The non-maskable interrupt input is edge-triggered. The signal is tested on the rising edge of the last cycle during the
current instruction.

The NMI signal is an asynchronous input. If signal NMI changes value (from 0 to 1) before the last clock period of an instruction
cycle, for the interrupt to be recognized the rising edge must be tset before the rising edge of that last clock (tset is equal to the
delay time on one level logic). Otherwise the next instruction will be executed and the interrupt will be handled after its
completion.

Figure 7. Non-maskable interrupt

Note: PC - instruction address (contents of Program Counter (PC))

Maskable Interrupts
The maskable interrupt input (INT) is level-sensitive and is tested at the rising edge of the last clock cycle of any instruction. If it
is High, the interrupt service is enabled and, providing interrupts have been enabled and there is no non-maskable interrupt
request or bus request, the special interrupt acknowledge cycle begins.

Note that after a reset of the processor, interrupts are, by default, disabled. The EI instruction should be used to enable
interrupts. After the EI instruction is executed, any interrupt request that is waiting for acknowledgement will not be accepted
until the instruction after the EI instruction has been executed.

The interrupt acknowledge cycle is similar to the FETCH cycle, with the difference being that signal SFRRD becomes active
rather than MEMRD and additional wait cycles are inserted. These additional wait cycles force the processor to wait before
reading data and therefore enables an external device to properly synchronize. Figure 8 shows a maskable interrupt request/
acknowledge cycle.

Figure 8. Maskable interrupt request and acknowledge cycle

Note: PC - instruction address (contents of Program Counter PC)

 read - point at which the data is read into the CPU

 sample - point at which signal is tested (SFRRD, WAIT_ST)

CLK

NMI
ADDR[15..0]
M1

MEMRD

PC

Tset

CLK
ADDR[15..0]

INT
M1
SFRRD

WAIT_ST

SFRDATAI[7..0]

PC

sample sample sample

sample

read

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 11

When an interrupt request is detected, the next cycle starts as a normal FETCH cycle (the contents of the PC are put onto the
address bus and M1 is activated).

On the falling edge of the second clock cycle after M1 goes active, the SFRRD signal changes to High and the CPU waits on
data. On the falling edge of the next clock cycle, signal WAIT_ST is tested and if it is active (High), the processor stays in this
same state until the WAIT_ST signal is changed to Low.

Each accepted interrupt request causes a clear of the IFF1 flip-flop - to disable interrupts.

On the rising edge of the next clock cycle after WAIT_ST goes Low, the CPU reads data from the data bus. How this information
will be used depends on the interrupt mode. This mode is changed under program control and, by default, after a reset of the
processor it is set in mode 0. The TSK80x has three maskable interrupt modes described in the following section.
Note: Maskable interrupts are requested by a High level on signal INT, as opposed to a rising edge on the NMI signal, used to
request a non-maskable interrupt.

Maskable Interrupt Modes
The interrupt request/acknowledge cycle is the same for every mode. The difference is how the data is read during this cycle.
MODE 0 – In this mode, the peripheral device requesting the interrupt can place any instruction on the data bus. For single byte
instructions, the processor reads the instruction during acknowledgement of the interrupt request and executes it in the normal
way. In general, it is a restart instruction, but all other instructions can be used.

For instructions that require more than one byte of data (e.g. CALL), the external device must disconnect memory and place
the needed data onto the data bus in the correct time period (the processor reads only one byte during the interrupt
request/acknowledge cycle; all other bytes of data are read in accordance with the processor’s normal data memory read cycle).
MODE 1 – In this mode, a normal interrupt acknowledge cycle is made, but data put onto the data bus is not read by the
processor, it is ignored. This mode is very similar to that of a non-maskable interrupt request/acknowledge but the CPU jumps to
another address (0038h) for the first instruction of the service routine.
MODE 2 – This is the most flexible interrupt mode. In this mode, during the interrupt cycle, the processor reads a byte of data
from the data bus and treats it not as an instruction (like in MODE 0), but as the low order byte of the address bus. The high
order byte of the address bus is loaded from the processor’s Interrupt register (I). This address points to the location in memory
where the first instruction of the interrupt service routine is stored (see Figure 9).

I register

From an
external
device

Memory

Table of
interrupt
vector

Subprogram

Figure 9. Call interrupt routine in mode 2.

This method of address construction allows different interrupt service routines for different devices to be used, or many interrupt
service routines for one device depending on the situation. Additionally, all interrupt service routines can be placed in any
memory location.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

12 CR0117 (v2.0) March 13, 2008

On-Chip Debugging
The debug-enabled version of the microcontroller (TSK80A_D) provides the following set of additional functional features that
facilitate real-time debugging of the microcontroller:

• Reset, Go, Halt processor control

• Single or multi-step debugging

• Read-write access for internal processor registers including IX, IY, SP and PC

• Read-write access for memory and I/O space

• Hardware execution breakpoints (configurable number of breakpoint address registers and breakpoint data registers) allows
trigger address and data for memory and I/O space.

• Hardware triggers can be set on an address range and/or data with masking bits

• Unlimited software breakpoints.

Adding Debug Functionality to the Standard Core
The debug functionality of the TSK80A_D is provided through the use of an On-Chip Debug System unit (OCDS). The simplified
block diagram of Figure 10 shows the connection between this unit and the standard TSK80A core.

TCK

TMS

TDI

TDO

Standard
JTAG

interface

MCU
symbol

pins

TSK80A_D OCD Microcontroller

Microcontroller
Core

(TSK80A)

OCDS Interface

OCDS Control
and

Debug Port

Figure 10. Simplified TSK80A_D block diagram

The host computer is connected to the target core using the IEEE 1149.1 (JTAG) standard interface. This is the physical
interface, providing connection to physical pins of the FPGA device in which the core has been embedded.

The Nexus 5001 standard is used as the protocol for communications between the host and all devices that are debug-enabled
with respect to this protocol. This includes all OCD-version microcontrollers, as well as other Nexus-compliant devices such as
frequency generators, logic analyzers, counters, etc.

All such devices are connected in a chain – the Soft Devices chain – which is determined when the design has been
implemented within the target FPGA device and presents in the Devices view (Figure 11). It is not a physical chain, in the sense
that you can see no external wiring – the connections required between the Nexus-enabled devices are made internal to the
FPGA itself.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 13

Figure 11. Nexus-enabled microcontroller appearing in the Soft Devices chain

For microcontrollers such as the TSK80A_D, the Nexus protocol enables you to debug the core through communication with the
OCDS Unit.

Accessing the Debug Environment
Debugging of the embedded code within an OCD-version microcontroller is carried out by starting a debug session. Prior to
starting the session, you must ensure that the design, including one or more OCD-version microcontrollers and their respective
embedded code, has been downloaded to the target physical FPGA device.

To start a debug session for the embedded code of a specific microcontroller in the design, simply right-click on the icon for that
microcontroller, in the Soft Devices region of the view, and choose the Debug command from the pop-up menu that appears.
Alternatively, click on the icon for the microcontroller (to focus it) and choose Processors » Pn » Debug from the main menus,
where n corresponds to the number for the processor in the Soft Devices chain.

The embedded project for the software running in the processor will initially be recompiled and the debug session will
commence. The relevant source code document (either Assembly or C) will be opened and the current execution point will be
set to the first line of executable code (see Figure 12).
Note: You can have multiple debug sessions running simultaneously – one per embedded software project associated with a
microcontroller in the Soft Devices chain.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

14 CR0117 (v2.0) March 13, 2008

Figure 12. Starting an embedded code debug session.

The debug environment offers the full suite of tools you would expect to see in order to efficiently debug the embedded code.
These features include:

• Setting Breakpoints

• Adding Watches
• Stepping into and over at both the source (*.C) and instruction (*.asm) level

• Reset, Run and Halt code execution

• Run to cursor
All of these and other feature commands can be accessed from the Debug menu or the associated Debug toolbar.

Various workspace panels are accessible in the debug environment, allowing you to view/control code-specific features, such as
Breakpoints, Watches and Local variables, as well as information specific to the microcontroller in which the code is running,
such as memory spaces and registers.
These panels can be accessed from the View » Workspace Panels » Embedded sub menu, or by clicking on the Embedded
button at the bottom of the application window and choosing the required panel from the subsequent pop-up menu.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 15

Figure 13. Workspace panels offering code-specific information and controls

Figure 14. Workspace panels offering information specific to the parent processor.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

16 CR0117 (v2.0) March 13, 2008

Full-feature debugging is of course enjoyed at the source code level – from within the source code file itself. To a lesser extent,
debugging can also be carried out from a dedicated debug panel for the processor. To access2 this panel, first double-click on
the icon representing the microcontroller to be debugged, in the Soft Devices region of the view. The Instrument Rack – Soft
Devices panel will appear, with the chosen processor instrument added to the rack (Figure 15).

Figure 15. Accessing debug features from the microcontroller's instrument panel

Note: Each core microcontroller that you have included in the design will appear, when double-clicked, as an Instrument in the
rack (along with any other Nexus-enabled devices).
The Nexus Debugger button provides access to the associated debug panel (Figure 16), which in turn allows you to interrogate
and to a lighter extent control, debugging of the processor and its embedded code, notably with respect to the registers and
memory.

One key feature of the panel is that it enables you to specify (and therefore change) the embedded code (HEX file) that is
downloaded to the microcontroller, quickly and efficiently.

For more information on the content and use of processor debug panels, press F1 when the
cursor is over one of these panels.

For further information regarding the use of the embedded tools for the TSK80x, see the Using
the TSK80x Embedded Tools guide.

For comprehensive information with respect to the embedded tools available for the TSK80x,
see the TSK80x Embedded Tools Reference.

2 The debug panels for each of the debug-enabled microcontrollers are standard panels and, as such, can be readily accessed from the View »
Workspace Panels » Instruments sub menu, or by clicking on the Instruments button at the bottom of the application window and choosing
the required panel – for the processor you wish to debug – from the subsequent pop-up menu.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 17

Figure 16. Processor debugging using the associated processor debug panel

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

18 CR0117 (v2.0) March 13, 2008

Instruction Set
All TSK80x instructions are binary code compatible.

Table 2. Instruction operand descriptions

Mnemonic Description

r / r' Working register A, B, C, D, E, H, L / A', B', C', D', E', H', L'

b single bit

n Any 8-bit immediate data

d Signed 8-bit displacement, from an Index register or Program Counter

nn Any 16-bit immediate data

pp Pointer to a 16-bit register BC, DE, HL, IX, IY, AF or SP. Note, in the concatenation
of the A and F registers, the Accumulator is used as the MSB

e relative jump (8 bits wide)

Instruction Set – Functional Groupings
Table 3. 8-bit arithmetic operations

Mnemonic Description Total Clock
Cycles for
execution

Width
(in
bytes)

ADC A, (HL) Add byte, from memory location selected by contents of
HL register, to Accumulator with carry flag

7 1

ADC A, (IX+d)

ADC A, (IY+d)

Add byte, from memory location selected by sum of the
contents of an Index register (IX or IY) and a signed 8-
bit displacement, to Accumulator with carry flag

9 3

ADC A, n Add immediate data to Accumulator with carry flag 7 2

ADC A, r Add register to Accumulator with carry flag 5 1

ADD A, (HL) Add byte, from memory location selected by contents of
HL register, to Accumulator

7 1

ADD A, (IX+d)

ADD A, (IY+d)

Add byte, from memory location selected by sum of the
contents of an Index register (IX or IY) and a signed 8-
bit displacement, to Accumulator

9 3

ADD A, n Add immediate data to Accumulator 7 2

ADD A, r Add register to Accumulator 5 1

DEC (HL) Decrement byte location in memory selected by
contents of register HL

7 1

DEC (IX+d)

DEC (IY+d)

Decrement byte location in memory selected by sum of
the contents of an Index register (IX or IY) and an 8-bit
signed displacement

9 3

DEC r Decrement register 5 1

INC (HL) Increment byte location in memory selected by contents
of register HL

7 1

INC (IX+d)

INC (IY+d)

Increment byte location in memory selected by sum of
the contents of an Index register (IX or IY) and an 8-bit
signed displacement

9 3

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 19

Mnemonic Description Total Clock
Cycles for
execution

Width
(in
bytes)

INC r Increment register 5 1

SBC A, (HL) Subtract byte, from memory location selected by sum of
the contents of HL register, from Accumulator with carry
flag

7 1

SBC A, (IX+d)

SBC A, (IY+d)

Subtract byte, from memory location selected by sum of
the contents of an Index register (IX or IY) and a signed
8-bit displacement, from Accumulator with carry flag

9 2

SBC A, n Subtract immediate data from Accumulator with carry
flag

7 2

SBC A, r Subtract register from Accumulator with carry flag 5 1

SUB A, (HL) Subtract byte, from memory location selected by
contents of HL register, from Accumulator

7 1

SUB A, (IX+d)

SUB A, (IY+d)

Subtract byte, from memory location selected by sum of
the contents of an Index register (IX or IY) and a signed
8-bit displacement, from Accumulator

9 3

SUB A, n Subtract immediate data from Accumulator 7 2

SUB A, r Subtract register from Accumulator 5 1

Table 4. 16-bit arithmetic operations

Mnemonic Description Total Clock
Cycles for
execution

Width
(in
bytes)

ADC HL, pp Add contents of 16-bit register pp to HL register with carry
flag

7 2

ADD HL, pp Add contents of 16-bit register pp to HL register 6 1

ADD IX, pp

ADD IY, pp

Add to Index register (IX or IY) the contents of the 16-bit
register pp

7 2

DEC IX

DEC IY

Decrement contents of Index register (IX or IY) 7 2

DEC pp Decrement contents of 16-bit register pp 6 1

INC IX

INC IY

Increment contents of Index register (IX or IY) 7 2

INC pp Increment contents of 16-bit register pp 6 1

SBC HL, pp Subtract contents of 16-bit register pp from register HL
with carry flag

7 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

20 CR0117 (v2.0) March 13, 2008

Table 5. Logic operations

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

AND A, (HL) Logically AND the byte, from memory location selected by
the contents of the HL register, to Accumulator

7 1

AND A, (IX+d)

AND A, (IY+d)

Logically AND the byte, from memory location selected by
sum of the contents of an Index register (IX or IY) and a
signed 8-bit displacement, to Accumulator

9 3

AND A, n Logically AND immediate data to Accumulator 7 2

AND r Logically AND register to Accumulator 5 1

CP A, (HL) Compare byte, from memory location selected by the
contents of the HL register, to Accumulator

7 1

CP A, (IX+d)

CP A, (IY+d)

Compare byte, from memory location selected by sum of
the contents of an Index register (IX or IY) and a signed 8-
bit displacement, to Accumulator

9 3

CP A, n Compare immediate data to Accumulator 7 2

CP A, r Compare contents of register to Accumulator 5 1

OR A, (HL) Logically OR the byte, from memory location selected by
the contents of the HL register, to Accumulator

7 1

OR A, (IX+d)

OR A, (IY+d)

Logically OR the byte, from memory location selected by
sum of the contents of an Index register (IX or IY) and a
signed 8-bit displacement, to Accumulator

9 3

OR A, n Logically OR immediate data to Accumulator 7 2

OR A, r Logically OR register to Accumulator 5 1

XOR A, (HL) Logically Exclusive OR the byte, from memory location
selected by the contents of the HL register, to Accumulator

7 1

XOR A, (IX+d)

XOR A, (IY+d)

Logically Exclusive OR the byte, from memory location
selected by sum of the contents of an Index register (IX or
IY) and a signed 8-bit displacement, to Accumulator

9 3

XOR A, n Logically Exclusive OR immediate data to Accumulator 7 2

XOR A, r Logically Exclusive OR register to Accumulator 5 1

Table 6. 8-bit load instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

LD (BC), A Load value in the Accumulator into the memory location
selected by the BC register

4 1

LD (DE), A Load value in the Accumulator into the memory location
selected by the DE register

4 1

LD (HL), n Load immediate data to memory location selected by the
contents of the HL register

5 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 21

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

LD (HL), r Load byte from register to memory location selected by
the contents of the HL register

4 1

LD (IX+d), n

LD (IY+d), n

Load immediate data to memory location selected by sum
of the contents of an Index register (IX or IY) and a signed
8-bit displacement

7 4

LD (IX+d), r

LD (IY+d), r

Load byte from register to memory location, selected by
sum of the contents of an Index register (IX or IY) and a
signed 8-bit displacement

6 3

LD (nn), A Load value in the Accumulator into the memory location
selected by direct address nn in the instruction itself

6 3

LD A, (BC) Load byte from memory location selected by contents of
the BC register

4 1

LD A, (DE) Load byte from memory location selected by contents of
the DE register

4 1

LD A, (nn) Load byte from memory location selected by direct
address nn into the Accumulator

6 3

LD A, I Load contents of Interrupt register into Accumulator 4 2

LD I, A Load contents of Accumulator into the Interrupt register 4 2

LD r, (HL) Load byte, from memory location selected by the contents
of the HL register, to register

4 1

LD r, (IX+d)

LD r, (IY+d)

Load byte, from memory location selected by sum of the
contents of an Index register (IX or IY) and a signed 8-bit
displacement, to register

6 3

LD r, n Load immediate data to register 4 2

LD r1, r2 Load data from register r2 to register r1 3 1

Table 7. 16-bit load instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

LD (nn), pp The contents of register pp are loaded into memory
location described by direct address nn

8 4

LD (nn), HL The contents of register HL are loaded into memory
location described by direct address nn

7 3

LD (nn), IX

LD (nn), IY

The contents of Index register IX or IY are loaded into
memory location described by direct address nn

8 4

LD pp, (nn) The contents of memory location described by direct
address nn are loaded into register pp

8 4

LD pp, nn Load immediate data into register pp 5 3

LD HL, (nn) The contents of memory location described by direct
address nn are loaded into register HL

5 3

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

22 CR0117 (v2.0) March 13, 2008

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

LD IX, (nn)

LD IY, (nn)

The contents of memory location described by direct
address nn are loaded into Index register (IX or IY)

8 4

LD IX, nn

LD IY, nn

Load immediate data into Index register (IX or IY) 6 4

LD SP, IX

LD SP, IY

The contents of Index register IX or IY are loaded into the
Stack Pointer register

4 2

LD SP,HL The contents of register HL are loaded into the Stack
Pointer register

4 1

POP IX

POP IY

Two bytes are “popped” from the stack in external memory
and loaded into index register IX or IY

6 2

POP pp Two bytes are “popped” from the stack in external memory
and loaded into 16-bit register pp

5 1

PUSH IX

PUSH IY

The contents of the Index register (IX or IY) are “pushed”
into the stack in external memory

6 2

PUSH pp The contents of 16-bit register pp are “pushed” into the
stack in external memory

5 1

Table 8. General-purpose arithmetic and control instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

CCF Invert carry flag in F register 3 1

CPL Complement Accumulator 3 1

DAA Convert Accumulator into packed BCD 5 1

DI Disable interrupt 3 1

EI Enable interrupt 3 1

HALT Halt the microprocessor 3 1

IM 0 Set interrupt in mode 0 4 2

IM 1 Set interrupt in mode 1 4 2

IM 2 Set interrupt in mode 2 4 2

NEG The contents of Accumulator are negated 4 2

NOP NO operation 3 1

SCF Set carry flag in F register 3 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 23

Table 9. Jump instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

DJNZ e Decrement register B, if B=0 fetch next instruction, else jump
relative to PC at e (e can be plus or minus)

8(13)* 2

JP C, nn Jump to address nn if flag C is set 6 3

JP HL Jump to address stored in HL register 3 1

JP IX

JP IY

Jump to address stored in Index register (IX or IY) 4 2

JP M, nn Jump to address nn if flag S is set 6 3

JP NC, nn Jump to address nn if flag C is reset 6 3

JP nn Jump to address nn 6 3

JP NZ, nn Jump to address nn if flag Z is reset 6 3

JP P, nn Jump to address nn if flag S is reset 6 3

JP PE, nn Jump to address nn if flag P/V is set 6 3

JP PO, nn Jump to address nn if flag P/V is reset 6 3

JP Z, nn Jump to address nn if flag Z is set 6 3

JR C, e Jump relative to PC at e (e can be plus or minus) if carry flag
is set

5(7)* 2

JR e Jump relative to PC at e (e can be plus or minus) 5 2

JR NC, e Jump relative to PC at e (e can be plus or minus) if carry flag
is reset

5(7)* 2

JR NZ, e Jump relative to PC at e (e can be plus or minus) if flag Z is
reset

5(7)* 2

JR Z, e Jump relative to PC at e (e can be plus or minus) if flag Z is
set

5(7)* 2

* The number of clock cycles is shown in parentheses for cases when the condition is not true.

Table 10. Call and return instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

CALL C, nn Call to subroutine at address nn if Carry flag is set 7(3)* 3

CALL M, nn Call to subroutine at address nn if S flag is set 7(3)* 3

CALL NC, nn Call to subroutine at address nn if Carry flag is reset 7(3)* 3

CALL nn Call to subroutine at address nn 7 3

CALL NZ, nn Call to subroutine at address nn if Z flag is reset 7(3)* 3

CALL P, nn Call to subroutine at address nn if S flag is reset 7(3)* 3

CALL PE, nn Call to subroutine at address nn if P/V flag is set 7(3)* 3

CALL PO, nn Call to subroutine at address nn if P/V flag is reset 7(3)* 3

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

24 CR0117 (v2.0) March 13, 2008

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

CALL Z, nn Call to subroutine at address nn if Z flag is set 7(3)* 3

RET Return from subroutine 6 1

RET C Return from subroutine if Carry flag is set 6(1)* 1

RET M Return from subroutine if S flag is set 6(1)* 1

RET NC Return from subroutine if Carry flag is reset 6(1)* 1

RET NZ Return from subroutine if Z flag is reset 6(1)* 1

RET P Return from subroutine if S flag is reset 6(1)* 1

RET PE Return from subroutine if P/V flag is set 6(1)* 1

RET PO Return from subroutine if P/V flag is reset 6(1)* 1

RET Z Return from subroutine if Z flag is set 6(1)* 1

RETI Return from servicing a maskable interrupt 7 2

RETN Return from servicing a non-maskable interrupt 7 2

RST 0h Restart (call) to address 0000h 6 1

RST 10h Restart (call) to address 0010h 6 1

RST 18h Restart (call) to address 0018h 6 1

RST 20h Restart (call) to address 0020h 6 1

RST 28h Restart (call) to address 0028h 6 1

RST 30h Restart (call) to address 0030h 6 1

RST 38h Restart (call) to address 0038h 6 1

RST 8h Restart (call) to address 0008h 6 1

* The number of clock cycles is shown in parentheses for cases when the condition is not true.

Table 11. Rotate and shift instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

RL (HL) Rotate left, one bit position through the Carry flag, the data
located in memory at the address stored in the HL register

8 2

RL (IX+d)

RL (IY+d)

Rotate left, one bit position through the Carry flag, the data
at the memory location whose address is the sum of the
contents of an Index register (IX or IY) and a signed 8-bit
displacement d

11 4

RL r Rotate left, one bit position through the Carry flag, the
contents of register r

6 2

RLA Rotate left, one bit position through the Carry flag, the
contents of the Accumulator

5 1

RLC (HL) Rotate left, one bit position with Carry flag, the data
located in memory at the address stored in the HL register

8 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 25

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

RLC (IX+d)

RLC (IY+d)

Rotate left, one bit position with Carry flag, the data at the
memory location whose address is the sum of the
contents of an Index register (IX or IY) and a signed 8-bit
displacement d

11 4

RLC r Rotate left, one bit position with Carry flag, the contents of
register r

6 2

RLCA Rotate left, one bit position with Carry flag, the contents of
the Accumulator

5 1

RLD Rotate left, four bit positions, the byte of data at the
memory location addressed by the contents of the HL
register, through the low order nibble of the Accumulator

8 2

RR (HL) Rotate right, one bit position through the Carry flag, the
data located in memory at the address stored in the HL
register

8 2

RR (IX+d)

RR (IY+d)

Rotate right, one bit position through the Carry flag, the
data at the memory location whose address is the sum of
the contents of an Index register (IX or IY) and a signed 8-
bit displacement d

11 4

RR r Rotate right, one bit position through the Carry flag, the
contents of register r

6 2

RRA Rotate right, one bit position through the Carry flag, the
contents of the Accumulator

5 1

RRC (HL) Rotate right, one bit position with Carry flag, the data
located in memory at the address stored in the HL register

8 2

RRC (IX+d)

RRC (IY+d)

Rotate right, one bit position with Carry flag, the data at
the memory location whose address is the sum of the
contents of an Index register (IX or IY) and a signed 8-bit
displacement d

11 4

RRC r Rotate right, one bit position with Carry flag, the contents
of register r

6 2

RRCA Rotate right, one bit position with Carry flag, the contents
of the Accumulator

5 1

RRD Rotate right, four bit positions, the contents of the HL
register, through the low order nibble of the Accumulator

8 2

SLA (HL) Shift arithmetically left, one bit position, the data located in
memory at the address stored in the HL register

8 2

SLA (IX+d)

SLA (IY+d)

Shift arithmetically left, one bit position, the data at the
memory location whose address is the sum of the
contents of an Index register (IX or IY) and a signed 8-bit
displacement d

11 4

SLA r Shift arithmetically left, one bit position, the contents of the
register r

6 2

SRA (HL) Shift arithmetically right, one bit position, the data located
in memory at the address stored in the HL register

8 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

26 CR0117 (v2.0) March 13, 2008

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

SRA (IX+d)

SRA (IY+d)

Shift arithmetically right, one bit position, the data at the
memory location whose address is the sum of the
contents of an Index register (IX or IY) and a signed 8-bit
displacement d

11 4

SRA r Shift arithmetically right, one bit position, the contents of
the register r

6 2

SRL (HL) Shift logically right, one bit position, the data located in
memory at the address stored in the HL register

8 2

SRL (IX+d)

SRL (IY+d)

Shift logically right, one bit position, the data at the
memory location whose address is the sum of the
contents of an Index register (IX or IY) and a signed 8-bit
displacement d

11 4

SRL r Shift logically right, one bit position, the contents of the
register r

6 2

Table 12. Input and output instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

IN A, (n) One byte of data from the I/O port selected by the
contents at the address n is loaded into the Accumulator

5 2

IN r, (C) One byte of data from the I/O port selected by the
contents of register C, is loaded into register r.

5 2

IND One byte of data is read from the I/O port selected by the
contents of register C and placed into memory at the
location specified by the contents of the HL register. Both
the HL and B registers are then decremented. Register B
is used as a byte counter.

8 2

INDR Functions the same as the IND instruction but at the end,
tests if B=0. If the test returns FALSE, the instruction is
repeated. If TRUE, the instruction finishes.

5 2

INI One byte of data is read from the I/O port selected by the
contents of register C and placed into memory at the
location specified by the contents of the HL register. The
HL register is then incremented and register B is
decremented. Register B is used as a byte counter.

8 2

INIR Functions the same as the INI instruction but at the end,
tests if B=0. If the test returns FALSE, the instruction is
repeated. If TRUE, the instruction finishes.

8 2

OTDR Functions the same as the OUTD instruction but at the
end, it tests the contents of register B. If it is 0, the
instruction is finished, otherwise it repeats.

8 2

OTIR Functions the same as the OUTI instruction but at the end,
it tests the contents of register B. If it is 0, the instruction is
finished, otherwise it repeats.

8 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 27

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

OUT (C), r The byte of data from register r is written to the external
peripheral device through the port selected by the
contents of register C.

5 2

OUT (n), A The byte of data from the Accumulator is written to the
external peripheral device through the port selected by the
contents at address n.

5 2

OUTD The byte of data contained in memory, at the address
specified by the contents of the HL register, is written to
the external peripheral device through the port selected by
the contents of register C. Both register B (byte counter)
and the HL register are decremented.

8 2

OUTI The byte of data contained in memory, at the address
specified by the contents of the HL register, is written to
the external peripheral device through the port selected by
the contents of register C. Register B (byte counter) is
decremented and the HL register is incremented.

8 2

* The number of clock cycles is shown in parentheses for cases when the condition is not true.

Table 13. Exchange, block transfer and search instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

CPD Compares the contents of the memory location specified
by the contents of the HL register, with the contents of the
Accumulator. Depending on the result, the relevant status
flag is set/reset. Both the HL and BC registers are
decremented.

7 2

CPDR Functions the same as the CPD instruction, but is
repeated until BC=0 or A equals (HL).

7(16)* 2

CPI Compares the contents of the memory location specified
by the contents of the HL register, with the contents of the
Accumulator. Depending on the result, the relevant status
flag is set/reset. The HL register is incremented. The BC
register (byte counter) is decremented.

7 2

CPIR Functions the same as the CPI instruction, but is repeated
until BC=0 or A equals (HL).

7(16)* 2

EX (SP), HL Exchange the two byte data value in register HL with two
bytes of data on top of the Stack

7 1

EX (SP), IX

EX (SP), IY

Exchange contents of register IX or IY with the two bytes
of data obtained from the memory addresses contained in
the top two levels of the Stack.

8 2

EX AF, AF’ Exchange contents of registers AF (basic) and AF’
(alternative)

3 1

EX DE, HL Exchange the two byte data values in the basic general
purpose registers DE and HL

3 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

28 CR0117 (v2.0) March 13, 2008

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

EXX Exchange the two byte data value in the basic general
purpose registers BC, DE and HL with the two byte data
value in the alternative general purpose registers BC’, DE’
and HL’

3 1

LDD Transfer a byte of data from the memory location
addressed by the contents of the HL register, to the
memory location addressed by the contents of the DE
register. The DE, HL and BC (byte counter) registers are
all decremented.

9 2

LDDR Functions the same as the LDD instruction but at the end,
it tests the contents of register BC. If it is 0, the instruction
is finished, otherwise it repeats.

9(16)* 2

LDI Transfer a byte of data from the memory location
addressed by the contents of the HL register, to the
memory location addressed by the contents of the DE
register. The DE and HL registers are incremented; the
BC register (byte counter) is decremented.

9 2

LDIR Functions the same as the LDI instruction but at the end, it
tests the contents of register BC. If it is 0, the instruction is
finished, otherwise it repeats.

9(16)* 2

* The number of clock cycles is shown in parentheses for cases when the condition is not true.

Table 14. Bit manipulation instructions

Mnemonic Description Total Clock
Cycles for
execution

Width
(in

bytes)

BIT b, (HL) Test bit b in the memory location specified by the contents
of the HL register and set the Z flag accordingly.

7 2

BIT b, (IX+d)

BIT b, (IY+d)

Test bit b in the memory location specified by the sum of
the contents of the Index register (IX or IY) and the signed
8-bit displacement d. Set the Z flag accordingly.

11 4

BIT b, r Test bit b in register r and set the Z flag accordingly. 5 2

RES b, (HL) Reset bit b in the memory location specified by the
contents of the HL register.

8 2

RES b, (IX+d)

RES b, (IY+d)

Reset bit b in the memory location specified by the sum of
the contents of the Index register (IX or IY) and the signed
8-bit displacement d.

11 4

RES b, r Reset bit b in register r 6 2

SET b, (HL) Set bit b in the memory location specified by the contents
of the HL register.

8 2

SET b, (IX+d)

SET b, (IY+d)

Set bit b in the memory location specified by the sum of
the contents of the Index register (IX or IY) and the signed
8-bit displacement d.

11 4

SET b, r Set bit b in register r 6 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 29

Hexadecimal Ordered Instructions
Table 15. Instruction set without prefix

Opcode Mnemonic Opcode Mnemonic

00h NOP 10h DJNZ e

01h LD BC, nn 11h LD DE, nn

02h LD (BC), A 12h LD (DE), A

03h INC BC 13h INC DE

04h INC B 14h INC D

05h DEC B 15h DEC D

06h LD B, n 16h LD D, n

07h RLCA 17h RLA

08h EX AF, AF’ 18h JR n

09h ADD HL, BC 19h ADD HL, DE

0Ah LD A, (BC) 1Ah LD A, (DE)

0Bh DEC BC 1Bh DEC DE

0Ch INC C 1Ch INC E

0Dh DEC C 1Dh DEC E

0Eh LD C, n 1Eh LD E, n

0Fh RRCA 1Fh RRA

20h JR NZ, n 30h JR NC, n

21h LD HL, nn 31h LD SP, nn

22h LD (nn) HL 32h LD (nn), A

23h INC HL 33h INC SP

24h INC H 34h INC (HL)

25h DEC H 35h DEC (HL)

26h LD H, n 36h LD (HL), n

27h DAA 37h SCF

28h JR Z, n 38h JR C, n

29h ADD HL, HL 39h ADD HL, SP

2Ah LD HL, (nn) 3Ah LD A, (nn)

2Bh DEC HL 3Bh DEC SP

2Ch INC L 3Ch INC A

2Dh DEC L 3Dh DEC A

2Eh LD L, n 3Eh LD A, n

2Fh CPL 3Fh CCF

40h LD B, B 50h LD D, B

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

30 CR0117 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

41h LD B, C 51h LD D, C

42h LD B, D 52h LD D, D

43h LD B, E 53h LD D, E

44h LD B, H 54h LD D, H

45h LD B, L 55h LD D, L

46h LD B, (HL) 56h LD D, (HL)

47h LD B, A 57h LD D, A

48h LD C, B 58h LD E, B

49h LD C, C 59h LD E, C

4Ah LD C, D 5Ah LD E, D

4Bh LD C, E 5Bh LD E, E

4Ch LD C, H 5Ch LD E, H

4Dh LD C, L 5Dh LD E, L

4Eh LD C, (HL) 5Eh LD E, (HL)

4Fh LD C, A 5Fh LD E, A

60h LD H, B 70h LD (HL), B

61h LD H, C 71h LD (HL), C

62h LD H, D 72h LD (HL), D

63h LD H, E 73h LD (HL), E

64h LD H, H (reserved in TSK80A_D) 74h LD (HL), H

65h LD H, L 75h LD (HL), L

66h LD H, (HL) 76h HALT

67h LD H, A 77h LD (HL), A

68h LD L, B 78h LD A, B

69h LD L, C 79h LD A, C

6Ah LD L, D 7Ah LD A, D

6Bh LD L, E 7Bh LD A, E

6Ch LD L, H 7Ch LD A, H

6Dh LD L, L 7Dh LD A, L

6Eh LD L, (HL) 7Eh LD A, (HL)

6Fh LD L, A 7Fh LD A, A

80h ADD A, B 90h SUB B

81h ADD A, C 91h SUB C

82h ADD A, D 92h SUB D

83h ADD A, E 93h SUB E

84h ADD A, H 94h SUB H

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 31

Opcode Mnemonic Opcode Mnemonic

85h ADD A, H 95h SUB L

86h ADD A, (HL) 96h SUB (HL)

87h ADD A, A 97h SBC A

88h ADC A, B 98h SBC B

89h ADC A, C 99h SBC C

8Ah ADC A, D 9Ah SBC D

8Bh ADC A, E 9Bh SBC E

8Ch ADC A, H 9Ch SBC H

8Dh ADC A, H 9Dh SBC L

8Eh ADC A, (HL) 9Eh SBC (HL)

8Fh ADC A, A 9Fh SBC A

A0h AND B B0h OR B

A1h AND C B1h OR C

A2h AND D B2h OR D

A3h AND E B3h OR E

A4h AND H B4h OR H

A5h AND L B5h OR L

A6h AND (HL) B6h OR (HL)

A7h AND A B7h OR A

A8h XOR B B8h CP B

A9h XOR C B9h CP C

AAh XOR D BAh CP D

ABh XOR E BBh CP E

ACh XOR H BCh CP H

ADh XOR L BDh CP L

AEh XOR (HL) BEh CP (HL)

AFh XOR A BFh CP A

C0h RET NZ D0h RET NC

C1h POP BC D1h POP DE

C2h JP NZ, nn D2h JP NC, nn

C3h JP nn D3h OUT (n), A

C4h CALL NZ, nn D4h CALL NC, nn

C5h PUSH BC D5h PUSH DE

C6h ADD A,n D6h SUB n

C7h RST 00 D7h RST 10

C8h RET Z D8h RET C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

32 CR0117 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

C9h RET D9h EXX

CAh JP Z, nn DAh JP C, nn

CBh Prefix DBh IN A, (n)

CCh CALL Z, nn DCh CALL C, nn

CDh CALL nn DDh Prefix

CEh ADC A, n DEh SBC A, n

CFh RST 08 DFh RST 18

E0h RET PO F0h RET P

E1h POP HL F1h POP AF

E2h JP PO, nn F2h JP P, nn

E3h EX (SP), HL F3h DI

E4h CALL PO, nn F4h CALL P, nn

E5h PUSH HL F5h PUSH AF

E6h AND n F6h OR n

E7h RST 20 F7h RST 30

E8h RET PE F8h RET M

E9h JP (HL) F9h LD SP, HL

EAh JP PE, nn FAh JP M, nn

EBh EX DE, HL FBh EI

ECh CALL PE, nn FCh CALL M, nn

EDh Prefix FDh Prefix

EEh XOR n FEh CP n

EFh RST 28 FFh RST 38

Table 16. Instruction set with prefix CB

Opcode Mnemonic Opcode Mnemonic

00h RLC B 10h RL B

01h RLC C 11h RL C

02h RLC D 12h RL D

03h RLC E 13h RL E

04h RLC H 14h RL H

05h RLC L 15h RL L

06h RLC (HL) 16h RL (HL)

07h RLC A 17h RL A

08h RRC B 18h RR B

09h RRC C 19h RR C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 33

Opcode Mnemonic Opcode Mnemonic

0Ah RRC D 1Ah RR D

0Bh RRC E 1Bh RR E

0Ch RRC H 1Ch RR H

0Dh RRC L 1Dh RR L

0Eh RRC (HL) 1Eh RR (HL)

0Fh RRC A 1Fh RR A

20h SLA B 30h Not supported

21h SLA C 31h Not supported

22h SLA D 32h Not supported

23h SLA E 33h Not supported

24h SLA H 34h Not supported

25h SLA L 35h Not supported

26h SLA (HL) 36h Not supported

27h SLA A 37h Not supported

28h SRA B 38h SRL B

29h SRA C 39h SRL C

2Ah SRA D 3Ah SRL D

2Bh SRA E 3Bh SRL E

2Ch SRA H 3Ch SRL H

2Dh SRA L 3Dh SRL L

2Eh SRA (HL) 3Eh SRL (HL)

2Fh SRA A 3Fh SRL A

40h BIT 0, B 50h BIT 2, B

41h BIT 0, C 51h BIT 2, C

42h BIT 0, D 52h BIT 2, D

43h BIT 0, E 53h BIT 2, E

44h BIT 0, H 54h BIT 2, H

45h BIT 0, L 55h BIT 2, L

46h BIT 0, (HL) 56h BIT 2, (HL)

47h BIT 0, A 57h BIT 2, A

48h BIT 1, B 58h BIT 3, B

49h BIT 1, C 59h BIT 3, C

4Ah BIT 1, D 5Ah BIT 3, D

4Bh BIT 1, E 5Bh BIT 3, E

4Ch BIT 1, H 5Ch BIT 3, H

4Dh BIT 1, L 5Dh BIT 3, L

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

34 CR0117 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

4Eh BIT 1, (HL) 5Eh BIT 3, (HL)

4Fh BIT 1, A 5Fh BIT 3, A

60h BIT 4, B 70h BIT 6, B

61h BIT 4, C 71h BIT 6, C

62h BIT 4, D 72h BIT 6, D

63h BIT 4, E 73h BIT 6, E

64h BIT 4, H 74h BIT 6, H

65h BIT 4, L 75h BIT 6, L

66h BIT 4, (HL) 76h BIT 6, (HL)

67h BIT 4, A 77h BIT 6, A

68h BIT 5, B 78h BIT 7, B

69h BIT 5, C 79h BIT 7, C

6Ah BIT 5, D 7Ah BIT 7, D

6Bh BIT 5, E 7Bh BIT 7, E

6Ch BIT 5, H 7Ch BIT 7, H

6Dh BIT 5, L 7Dh BIT 7, L

6Eh BIT 5, (HL) 7Eh BIT 7, (HL)

6Fh BIT 5, A 7Fh BIT 7, A

80h RES 0, B 90h RES 2, B

81h RES 0, C 91h RES 2, C

82h RES 0, D 92h RES 2, D

83h RES 0, E 93h RES 2, E

84h RES 0, H 94h RES 2, H

85h RES 0, L 95h RES 2, L

86h RES 0, (HL) 96h RES 2, (HL)

87h RES 0, A 97h RES 2, A

88h RES 1, B 98h RES 3, B

89h RES 1, C 99h RES 3, C

8Ah RES 1, D 9Ah RES 3, D

8Bh RES 1, E 9Bh RES 3, E

8Ch RES 1, H 9Ch RES 3, H

8Dh RES 1, L 9Dh RES 3, L

8Eh RES 1, (HL) 9Eh RES 3, (HL)

8Fh RES 1, A 9Fh RES 3, A

A0h RES 4, B B0h RES 6, B

A1h RES 4, C B1h RES 6, C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 35

Opcode Mnemonic Opcode Mnemonic

A2h RES 4, D B2h RES 6, D

A3h RES 4, E B3h RES 6, E

A4h RES 4, H B4h RES 6, H

A5h RES 4, L B5h RES 6, L

A6h RES 4, (HL) B6h RES 6, (HL)

A7h RES 4, A B7h RES 6, A

A8h RES 5, B B8h RES 7, B

A9h RES 5, C B9h RES 7, C

AAh RES 5, D BAh RES 7, D

ABh RES 5, E BBh RES 7, E

ACh RES 5, H BCh RES 7, H

ADh RES 5, L BDh RES 7, L

AEh RES 5, (HL) BEh RES 7, (HL)

AFh RES 5, A BFh RES 7, A

C0h SET 0 ,B D0h SET 2 ,B

C1h SET 0, C D1h SET 2, C

C2h SET 0, D D2h SET 2, D

C3h SET 0, E D3h SET 2, E

C4h SET 0, H D4h SET 2, H

C5h SET 0, L D5h SET 2, L

C6h SET 0, (HL) D6h SET 2, (HL)

C7h SET 0, A D7h SET 2, A

C8h SET 1,B D8h SET 3 ,B

C9h SET 1, C D9h SET 3, C

CAh SET 1, D DAh SET 3, D

CBh SET 1, E DBh SET 3, E

CCh SET 1, H DCh SET 3, H

CDh SET 1, L DDh SET 3, L

CEh SET 1, (HL) DEh SET 3, (HL)

CFh SET 1, A DFh SET 3, A

E0h SET 4 ,B F0h SET 6 ,B

E1h SET 4, C F1h SET 6, C

E2h SET 4, D F2h SET 6, D

E3h SET 4, E F3h SET 6, E

E4h SET 4, H F4h SET 6, H

E5h SET 4, L F5h SET 6, L

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

36 CR0117 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

E6h SET 4, (HL) F6h SET 6, (HL)

E7h SET 4, A F7h SET 6, A

E8h SET 5 ,B F8h SET 7 ,B

E9h SET 5, C F9h SET 7, C

EAh SET 5, D FAh SET 7, D

EBh SET 5, E FBh SET 7, E

ECh SET 5, H FCh SET 7, H

EDh SET 5, L FDh SET 7, L

EEh SET 5, (HL) FEh SET 7, (HL)

EFh SET 5, A FFh SET 7, A

Table 17. Instruction set with prefix DD

Opcode Mnemonic Opcode Mnemonic

09h ADD IX, BC 72h LD (IX+d), D

19h ADD IX, DE 73h LD (IX+d), E

21h LD IX, nn 74h LD (IX+d), H

22h LD (nn), IX 75h LD (IX+d), L

23h INC IX 77h LD (IX+d), A

29h ADD IX, XI 7Eh LD A, (IX+d)

2Ah LD IX, (nn) 86h ADD A, (IX+d)

2Bh DEC IX 8Eh ADC A, (IX+d)

34h INC (IX+d) 96h SUB (IX+d)

35h DEC (IX+d) 9Eh SBC A, (IX+d)

36h LD (IX+d), n A6h AND (IX+d)

39h ADD IX, SP AEh XOR (IX+d)

46h LD B, (IX+d) B6h OR (IX+d)

4Eh LD C, (IX+d) BEh CP (IX+d)

56h LD D, (IX+d) E1h POP IX

5Eh LD E, (IX+d) E3h EX (SP), IX

66h LD H, (IX+d) E5h PUSH IX

6Eh LD L, (IX+d) E9h JP (IX)

70h LD (IX+d), B F9h LD SP, IX

71h LD (IX+d), C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 37

Table 18. Instruction set with prefix DD and CB

Opcode Mnemonic Opcode Mnemonic

06h RLC (IX+d) 86h RES 0, (IX+d)

0Eh RRC (IX+d) 8Eh RES 1, (IX+d)

16h RL (IX+d) 96h RES 2, (IX+d)

1Eh RR (IX+d) 9Eh RES 3, (IX+d)

26h SLA (IX+d) A6h RES 4, (IX+d)

2Eh SRA (IX+d) Aeh RES 5, (IX+d)

3Eh SRL (IX+d) B6h RES 6, (IX+d)

46h BIT 0, (IX+d) BEh RES 7, (IX+d)

4Eh BIT 1, (IX+d) C6h SET 0, (IX+d)

56h BIT 2, (IX+d) CEh SET 1, (IX+d)

5Eh BIT 3, (IX+d) D6h SET 2, (IX+d)

66h BIT 4, (IX+d) DEh SET 3, (IX+d)

6Eh BIT 5, (IX+d) E6h SET 4, (IX+d)

76h BIT 6, (IX+d) EEh SET 5, (IX+d)

7Eh BIT 6, (IX+d) F6h SET 6, (IX+d)

 FEh SET 7, (IX+d)

Table 19. Instruction set with prefix ED

Opcode Mnemonic Opcode Mnemonic

40h IN B, (C) 62h SBC HL, HL

41h OUT (C), B 67h RRD

42h SBC HL, BC 68h IN L, (C)

43h LD (nn), BC 69h OUT (C), L

44h NEG 6Ah ADC HL, HL

45h RETN 6Fh RLD

46h IM 0 72h SBC HL, SP

47h LD I,A 73h LD (nn), SP

48h IN C, (C) 78h IN A, (C)

49h OUT (C), C 79h OUT (C), A

4Ah ADC HL, BC 7Ah ADC HL, SP

4Bh LD BC, (nn) 7Bh LD SP, (nn)

4Dh RETI A0h LDI

4Fh - A1h CPI

50h IN D, (C) A2h INI

51h OUT (C), D A3h OUTI

52h SBC HL, DE A8h LDD

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

38 CR0117 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

53h LD (nn), DE A9h CPD

56h IM 1 AAh IND

57h LD A, I ABh OUTD

58h IN E, (C) B0h LDIR

59h OUT (C), E B1h CPIR

5Ah ADC HL, DE B2h INIR

5Bh LD DE, (nn) B3h OTIR

5Eh IM 2 B8h LDDR

5Fh - B9h CPDR

60h IN H, (C) BAh INDR

61h OUT (C), H BBh OTDR

Table 20. Instruction set with prefix FD

Opcode Mnemonic Opcode Mnemonic

09h ADD IY, BC 72h LD (IY+d), D

19h ADD IY, DE 73h LD (IY+d), E

21h LD IY, nn 74h LD (IY+d), H

22h LD (nn), IY 75h LD (IY+d), L

23h INC IY 77h LD (IY+d), A

29h ADD IY, IY 7Eh LD A, (IY+d)

2Ah LD IY, (nn) 86h ADD A, (IY+d)

2Bh DEC IY 8Eh ADC A, (IY+d)

34h INC (IY+d) 96h SUB (IY+d)

35h DEC (IY+d) 9Eh SBC A, (IY+d)

36h LD (IY+d), n A6h AND (IY+d)

39h ADD IY, SP AEh XOR (IY+d)

46h LD B, (IY+d) B6h OR (IY+d)

4Eh LD C, (IY+d) BEh CP (IY+d)

56h LD D, (IY+d) E1h POP IY

5Eh LD E, (IY+d) E3h EX (SP), IY

66h LD H, (IY+d) E5h PUSH IY

6Eh LD L, (IY+d) E9h JP (IY)

70h LD (IY+d), B F9h LD SP, IY

71h LD (IY+d), C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 39

Table 21. Instruction set with prefix FD and CB

Opcode Mnemonic Opcode Mnemonic

06h RLC (IY+d) 86h RES 0, (IY+d)

0Eh RRC (IY+d) 8Eh RES 1, (IY+d)

16h RL (IY+d) 96h RES 2, (IY+d)

1Eh RR (IY+d) 9Eh RES 3, (IY+d)

26h SLA (IY+d) A6h RES 4, (IY+d)

2Eh SRA (IY+d) AEh RES 5, (IY+d)

3Eh SRL (IY+d) B6h RES 6, (IY+d)

46h BIT 0, (IY+d) BEh RES 7, (IY+d)

4Eh BIT 1, (IY+d) C6h SET 0, (IY+d)

56h BIT 2, (IY+d) CEh SET 1, (IY+d)

5Eh BIT 3, (IY+d) D6h SET 2, (IY+d)

66h BIT 4, (IY+d) DEh SET 3, (IY+d)

6Eh BIT 5, (IY+d) E6h SET 4, (IY+d)

76h BIT 6, (IY+d) EEh SET 5, (IY+d)

7Eh BIT 6, (IY+d) F6h SET 6, (IY+d)

 FEh SET 7, (IY+d)

Instruction Set – Detailed Reference

ADC A, s
Function: Add 8-bit with carry

Description: Adds the data from the byte variable s and the Carry flag to the contents of the Accumulator and stores the
result in the Accumulator. The byte variable s can be any of the following: a register r, an immediate data
value n, a data value in memory at a location selected by the contents of the HL register, or data from memory
at the location selected by the sum of an Index register (IX or IY) and an 8-bit displacement d.

ADC A, r
Operation: ADC

(A) ← (A) + (r) + (C)

Bytes: 1

Encoding:

1 0 0 0 1 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

40 CR0117 (v2.0) March 13, 2008

Register rrr

E 011

H 100

L 101

A 111

ADC A, n
Operation: ADC

(A) ← (A) + n + (C)

Bytes: 2

Encoding:

1 1 0 0 1 1 1 0

n - immediate data

ADC A, (HL)
Operation: ADC

(A) ← (A) + ((HL)) + (C)

Bytes: 1

Encoding:

1 0 0 0 1 1 1 0

ADC A, (IX+d)
Operation: ADC

(A) ← (A) + ((IX+d)) + (C)

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 0 0 1 1 1 0

d

ADC A, (IY+d)
Operation: ADC

(A) ← (A) + ((IY+d)) + (C)

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

1 0 0 0 1 1 1 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 41

H Set if carry from bit 3; reset otherwise

P/V Set if overflow; reset otherwise

N Reset

C Set if carry from bit 7; reset otherwise.

ADC HL, pp
Function: Add 16-bit with carry

Description: Adds the contents of register pp and the Carry flag, to the contents of the HL register. The result is stored in
the HL register.

Operation: ADC

(HL) ← (HL) + (pp) + (C)

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 p p 1 0 1 0

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

HL 10

SP 11

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if carry from bit 11; reset otherwise

P/V Set if overflow; reset otherwise

N Reset

C Set if carry from bit 15; reset otherwise.

ADD A, s
Function: Add 8-bit data

Description: Adds the data from the byte variable s to the Accumulator and stores the result in the Accumulator. The byte
variable s can be any of the following: a register r, an immediate data value n, a data value in memory at a
location selected by the contents of the HL register, or data from memory at the location selected by the sum
of an Index register (IX or IY) and an 8-bit displacement d.

ADD A, r
Operation: ADD

(A) ← (A) + (r)

Bytes: 1

Encoding:

1 0 0 0 0 r r r

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

42 CR0117 (v2.0) March 13, 2008

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

ADD A, n
Operation: ADD

(A) ← (A) + n

Bytes: 2

Encoding:

1 1 0 0 0 1 1 0

n - immediate data

ADD A, (HL)
Operation: ADD

(A) ← (A) + ((HL))

Bytes: 1

Encoding:

1 0 0 0 0 1 1 0

ADD A, (IX+d)
Operation: ADD

(A) ← (A) + ((IX+d))

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 0 0 0 1 1 0

d

ADD A, (IY+d)
Operation: ADD

(A) ← (A) + ((IY+d))

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 43

1 0 0 0 0 1 1 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if carry from bit 3; reset otherwise

P/V Set if overflow; reset otherwise

N Reset

C Set if carry from bit 7; reset otherwise.

ADD HL, pp
Function: Add 16-bit data

Description: Adds the contents of register pp to the contents of register HL and stores the result in the HL register.

Operation: ADD

(HL) ← (HL) + (pp)

Bytes: 1

Encoding:

0 0 p p 1 0 0 1

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

HL 10

SP 11

Flag setting (in register F):

S Not affected

Z not affected

H Set if carry from bit 11; reset otherwise

P/V not affected

N Reset

C Set if carry from bit 15; reset otherwise

ADD IX, pp
Function: Add 16-bit data

Description: Adds the contents of register pp to the contents of register IX and stores the result in the IX register.

Operation ADD

(IX) ← (IX) + (pp)

Bytes 2

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

44 CR0117 (v2.0) March 13, 2008

1 1 0 1 1 1 0 1

0 0 p p 1 0 0 1

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

IX 10

SP 11

Flag setting (in register F):

S Not affected

Z not affected

H Set if carry from bit 11; reset otherwise

P/V not affected

N Reset

C Set if carry from bit 15; reset otherwise

ADD IY, pp
Function: Add 16-bit data

Description: Adds the contents of register pp to the contents of register IY and stores the result in the IY register

Operation ADD

(IY) ← (IY) + (pp)

Bytes 2

Encoding:

1 1 1 1 1 1 0 1

0 0 p p 1 0 0 1

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

IY 10

SP 11

Flag setting (in register F):

S Not affected

Z not affected

H Set if carry from bit 11; reset otherwise

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 45

P/V not affected

N Reset

C Set if carry from bit 15; reset otherwise.

AND A, s
Function: Logical AND

Description: Performs a logical AND between the data from byte variable s and the contents of the Accumulator. The byte
variable s can be any of the following: a register r, an immediate data value n, a data value in memory at a
location selected by the contents of the HL register, or data from memory at the location selected by the sum
of an Index register (IX or IY) and an 8-bit displacement d.

AND A, r
Operation: AND

(A) ← (A) ^ (r)

Bytes: 1

Encoding:

1 0 1 0 0 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

AND A, n
Operation: ADD

(A) ← (A) ∧ n

Bytes: 2

Encoding:

1 1 1 0 0 1 1 0

n - immediate data

AND A, (HL)
Operation: AND

(A) ← (A) ∧ ((HL))

Bytes: 1

Encoding:

1 0 1 0 0 1 1 0

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

46 CR0117 (v2.0) March 13, 2008

AND A, (IX+d)
Operation: AND

(A) ← (A) ∧ ((IX+d))

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 1 0 0 1 1 0

d

AND A, (IY+d)
Operation: AND

(A) ← (A) ∧ ((IY+d))

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

1 0 1 0 0 1 1 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set

P/V Set if parity even; reset otherwise

N Reset

C Reset.

BIT b, m
Function: Test bit

Description: Tests bit b of the data from byte variable m. If it is zero the Z flag is set, otherwise the Z flag is cleared. The
byte variable m can be any of the following: a register r, a data value in memory at a location selected by the
contents of the HL register, or data from memory at the location selected by the sum of an Index register (IX or
IY) and an 8-bit displacement d.

The bit position within the byte of data (bit0 – bit7) is specified by using 3-bit encoding. The table below shows this encoding for
each possible bit position. This 3-bit code replaces the bbb entry in the encoding for the instruction.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 47

Bit position bbb

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

BIT b, r
Operation: BIT

Z flag ← NOT (bit b of (r))

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 1 b b b r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

BIT b, (HL)
Operation: BIT

Z flag ← NOT (bit b of ((HL)))

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 1 b b b 1 1 0

BIT b, (IX+d)
Operation: BIT

Z flag ← NOT (bit b of ((IX+d)))

Bytes: 4

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

48 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 1 b b b 1 1 0

BIT b, (IY+d)
Operation: BIT

Z flag ← NOT (bit b of ((IY+d)))

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 1 b b b 1 1 0

Flag setting (in register F):

S Set if b=7 and bit 7 in m=1

Z Set if specified bit is zero; reset otherwise

H Set

P/V Set if specified bit is zero; reset otherwise

N Reset

C Not affected.

CALL cc nn
Function: Call to subroutine if condition true

Description: Tests condition cc. If it is TRUE, the current contents of the Program Counter (PC) are pushed on to the top of
the stack. The destination address nn is then loaded into the PC. This is the address of the first instruction of
the subroutine. (the second n operand is the least significant byte and is loaded first)

The program then makes the jump to the subroutine, with the return address stored on the stack. Note that the
return address points to the next sequential instruction after the CALL.

The PC will be incremented by three before the push is executed. The contents of the PC are pushed onto the
stack as follows:

Stack Pointer (SP) contents decremented

High order byte of PC contents loaded to memory location pointed to by SP

SP decremented again

Low order byte of PC contents loaded to memory location pointed to by SP (this memory location is now at the
top of the stack)

In the case when the condition is FALSE, the PC is incremented as normal and the next sequential instruction
is fetched.

The table below shows the conditions that cc can represent. Each condition tests the state of a flag in the F
register. The listed 3-bit value for each condition replaces the ccc entry in the encoding for the instruction.

Condition cc Description Relevant flag ccc

NZ Non Zero Z 000

Z Zero Z 001

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 49

Condition cc Description Relevant flag ccc

NC Non Carry C 010

C Carry C 011

PO Parity odd P/V 100

PE Parity even P/V 101

P Sign positive S 110

M Sign negative S 111

Operation: CALL

If cc true:

(SP) ← (SP) - 1

((SP)) ← (PCH)

(SP) ← (SP) - 1

((SP)) ← (PCL)

(PC) ← nn

Else: nothing

Bytes: 3

Encoding:

1 1 c c c 1 0 0

n

n

Flag setting (in register F): Flags are not affected.

CALL nn
Function: Call to subroutine

Description: The current contents of the Program Counter (PC) are pushed on to the top of the stack. The destination
address nn is then loaded into the PC. This is the address of the first instruction of the subroutine. (The
second n operand is the least significant byte and is read first)

The program then makes the jump to the subroutine, with the return address stored on the stack. Note that the
return address points to the next sequential instruction after the CALL.

The PC will be incremented by three before the push is executed. The contents of the PC are pushed onto the
stack as follows:

Stack Pointer (SP) contents decremented

High order byte of PC contents loaded to memory location pointed to by SP

SP decremented again

Low order byte of PC contents loaded to memory location pointed to by SP (this memory location is now at the
top of the stack

Operation: CALL

(SP) ← (SP) - 1

((SP)) ← (PCH)

(SP) ← (SP) - 1

((SP)) ← (PCL)

(PC) ← nn

Bytes: 3

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

50 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 0 0 1 1 0 1

n

n

Flag setting (in register F): Flags are not affected.

CCF
Function: Complement Carry flag

Description: The Carry flag in register F (flag register) is inverted.

Operation: CCF

(C) ← not (C)

Bytes: 1

Encoding:

0 0 1 1 1 1 1 1

Flag setting (in register F):

S Not affected

Z Not affected

H Previous Carry flag setting

P/V Not affected

N Reset

C not (C).

CP s
Function: Compare data

Description: Compares the data stored in the byte variable s with that stored in the Accumulator. The contents of s are
subtracted from the contents of the Accumulator. The contents of the Accumulator remains unchanged and
the result is not stored anywhere. Only the appropriate flags in the flag register (F) are changed to reflect the
result of the comparison.

The byte variable s can be any of the following: a register r, an immediate data value n, a data value in
memory at a location selected by the contents of the HL register, or data from memory at the location selected
by the sum of an Index register (IX or IY) and an 8-bit displacement d.

CP r
Operation: CP

(A) - (r)

Bytes: 1

Encoding:

1 0 1 1 1 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 51

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

CP n
Operation: CP

(A) - n

Bytes: 2

Encoding:

1 1 1 1 1 1 1 0

n - immediate data

CP (HL)
Operation: CP

(A) - ((HL))

Bytes: 1

Encoding:

1 0 1 1 1 1 1 0

CP (IX+d)
Operation: CP

(A) - ((IX+d))

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 1 1 1 1 1 0

d

CP (IY+d)
Operation: CP

(A) - ((IY+d))

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

1 0 1 1 1 1 1 0

d

Flag setting (in register F):

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

52 CR0117 (v2.0) March 13, 2008

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Set if overflow; reset otherwise

N Set

C Set if borrow; reset otherwise.

CPD
Function: Compare and decrement

Description: Compares the data stored in memory, at the location selected by the contents of the HL register, with that
stored in the Accumulator. The contents of the memory location are subtracted from the contents of the
Accumulator. The contents of the Accumulator remains unchanged and the result is not stored anywhere.
Only the appropriate flags in the flag register (F) are changed to reflect the result of the comparison.

The HL and BC (byte counter) registers are decremented.

Operation: CPD

(A) - ((HL))

(HL) ← (HL) - 1

(BC) ← (BC) - 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 1 0 0 1

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero ((A) = ((HL))); reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Reset if (BC) = 0; set otherwise

N Set

C Not affected

CPDR
Function: Compare and decrement, repeat until (BC) = 0

Description: Compares the data stored in memory, at the location selected by the contents of the HL register, with that
stored in the Accumulator. The contents of the memory location are subtracted from the contents of the
Accumulator. The contents of the Accumulator remains unchanged and the result is not stored anywhere.
Only the appropriate flags in the flag register (F) are changed to reflect the result of the comparison.

The HL and BC (byte counter) registers are decremented. If decrementing causes BC to go to zero, or if the
contents of the Accumulator and the memory location addressed by HL are equal, the instruction is
terminated. Otherwise, the Program Counter is decremented by two and the instruction is repeated. Interrupt
requests can be recognized.

Operation: CPDR

(A) - ((HL))

(HL) ← (HL) - 1

(BC) ← (BC) - 1

If (A) - ((HL)) = 0 or (BC) = 0 then

Finish instruction

else

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 53

repeat

end

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 1 0 0 1

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Reset if (BC) = 0; set otherwise

N Set

C Not affected

CPI
Function: Compare and increment

Description: Compares the data stored in memory, at the location selected by the contents of the HL register, with that
stored in the Accumulator. The contents of the memory location are subtracted from the contents of the
Accumulator. The contents of the Accumulator remains unchanged and the result is not stored anywhere.
Only the appropriate flags in the flag register (F) are changed to reflect the result of the comparison.

The HL register is incremented and the BC (byte counter) register is decremented.

Operation: CPI

(A) - ((HL))

(HL) ← (HL) + 1

(BC) ← (BC) - 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 0 0 0 0

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Reset if (BC) = 0; set otherwise

N Set

C Not affected.

CPIR
Function: Compare and increment, repeat until (BC) = 0

Description: Compares the data stored in memory, at the location selected by the contents of the HL register, with that
stored in the Accumulator. The contents of the memory location are subtracted from the contents of the
Accumulator. The contents of the Accumulator remains unchanged and the result is not stored anywhere.
Only the appropriate flags in the flag register (F) are changed to reflect the result of the comparison.

The HL register is incremented and the BC (byte counter) register is decremented. If decrementing causes the
contents of BC to go to zero, or if the contents of the Accumulator and the memory location addressed by HL

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

54 CR0117 (v2.0) March 13, 2008

are equal, the instruction is terminated. Otherwise, the Program Counter is decremented by two and the
instruction is repeated. Interrupt requests can be recognized.

Operation: CPIR

(A) - ((HL))

(HL) ← (HL) + 1

(BC) ← (BC) - 1

If (A) - ((HL)) = 0 or (BC) = 0 then

Finish instruction

else

repeat

end

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 0 0 0 1

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Reset if (BC) = 0 ; set otherwise

N Set

C Not affected.

CPL
Function: Complement Accumulator

Description: The contents of the Accumulator are inverted (one’s complement).

Operation: CPL

(A) ← not (A)

Bytes: 1

Encoding:

0 0 1 0 1 1 1 1

Flag setting (in register F):

S Not affected

Z Not affected

H Set

P/V Not affected

N Set

C Not affected.

DAA
Function: Decimal adjust Accumulator

Description: Adjusts the contents of the Accumulator so that the result of BCD (Binary Coded Decimal) addition/subtraction
operations is correctly represented in BCD format too.

Operation: DAA

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 55

(A) ← (A) + corrective adjustment (for addition operations)

(A) ← (A) - corrective adjustment (for subtraction operations)

Bytes: 1

Encoding:

0 0 1 0 0 1 1 1

The following table indicates the operation (corrective adjustment) performed for both addition operations (N=0) and subtraction
operations (N=1).

N C and H
flags before
DAA

Accumulator low
order nibble

Accumulator high
order nibble

Corrective
adjustment

C flag after
DAA

0-9 00 0 0-9

A-F 60 1

0-8 06 0

00

A-F

9-F 66 1

0-9 06 0 0-9

A-F 66 1

0-9 06 0

01

A-F

A-F 66 1

0-9 0-F 60 1 10

A-F 0-F 66 1

0

11 0-F 0-F 66 1

9-F 66 1 A-F

0-8 06 0

A-F 60 1

00

0-9

0-9 00 0

A-F 66 1 0-9

0-9 06 0

9-F 66 1

01

A-F

0-8 06 0

A-F 0-F 66 1 10

0-9 0-F 60 1

1

11 0-F 0-F 66 1

Flag setting (in register F):

S Set if MSB in Accumulator is 1 after operation; reset otherwise

Z Set if the Accumulator is 0 after operation; reset otherwise

H Set according to table above

P/V Set if the Accumulator has even parity after operation; reset otherwise

N Not affected

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

56 CR0117 (v2.0) March 13, 2008

C Set according to table above

DEC pp
Function: Decrement 16-bit register

Description: The contents of the 16-bit register pp are decremented.

Operation: DEC

(pp) ← (pp) - 1

Bytes: 1

Encoding:

0 0 p p 1 0 1 1

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

HL 10

SP 11

Flag setting (in register F): Flags are not affected

DEC IX
Function: Decrement 16-bit register

Description: The contents of the Index register IX are decremented

Operation DEC

(IX) ← (IX) - 1

Bytes 2

Encoding:

1 1 0 1 1 1 0 1

0 0 1 0 1 0 1 1

Flag setting (in register F): Flags are not affected

DEC IY
Function: Decrement 16-bit register

Description: The contents of the Index register IY are decremented

Operation DEC

(IY) ← (IY) - 1

Bytes 2

Encoding:

1 1 1 1 1 1 0 1

0 0 1 0 1 0 1 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 57

Flag setting (in register F): Flags are not affected.

DEC m
Function: Decrement 8-bit data

Description: The data from the byte variable m is decremented by one and the relevant flags in the flag register (F) are
set/reset accordingly. The byte variable m can be any of the following: a register r, a data value in memory at
a location selected by the contents of the HL register, or data from memory at the location selected by the sum
of an Index register (IX or IY) and an 8-bit displacement d.

DEC r
Operation: DEC

(r) ← (r) - 1

Bytes: 1

Encoding:

0 0 r r r 1 0 1

The following table shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

DEC (HL)
Operation: DEC

((HL)) ← ((HL)) - 1

Bytes: 1

Encoding:

0 0 1 1 0 1 0 1

DEC (IX+d)
Operation: DEC

((IX+d)) ← ((IX+d)) - 1

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

0 0 1 1 0 1 0 1

d

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

58 CR0117 (v2.0) March 13, 2008

DEC (IY+d)
Operation: DEC

((IY+d)) ← ((IY+d)) - 1

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

0 0 1 1 0 1 0 1

d

Flag setting (in register F):

S Set if result is negative; reset otherwise
Z Set if result is zero; reset otherwise

H Set if borrow from bit 3; reset otherwise

P/V Set if data value was 80h before operation; reset otherwise

N Set

C Not affected.

DI
Function: Disable interrupt

Description: This instruction disables maskable interrupts by resetting the Interrupt Enable registers IFF1 and IFF2. During
execution of this instruction, maskable interrupts are not serviced.

Operation: DI

(IFF1) ← 0

(IFF2) ← 0

Bytes: 1

Encoding:

1 1 1 1 0 0 1 1

Flag setting (in register F): Flags are not affected.

DJNZ e
Function: Decrement and jump if not zero

Description: This instruction decrements register B and tests its value. If it is zero, it goes to the next sequential instruction
after the DJNZ instruction. If the value in register B is not zero, a displacement e is added to the contents of
the Program Counter and the next instruction is fetched from the resulting address. In this case, a jump can
be made in the range of -126 to 129 bytes relative to the address of the DJNZ instruction.

Note that register B is decremented first and then tested to see if its value is zero.

Operation: DJNZ

(B) ← (B) - 1

if (B) = 0 then

Go to next instruction

else

(PC) ← (PC) + e

Bytes: 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 59

Encoding:

0 0 0 1 0 0 0 0

e

Flag setting (in register F): Flags are not affected.

EI
Function: Enable interrupt

Description: This instruction enables maskable interrupts by setting the Interrupts Enable registers IFF1 and IFF2. During
execution of this instruction and the next, maskable interrupts are not serviced.

Operation: EI

(IFF1) ← 1

(IFF2) ← 1

Bytes: 1

Encoding:

1 1 1 1 1 0 1 1

Flag setting (in register F): Flags are not affected.

EX AF, AF’
Function: Exchange contents in AF for AF’

Description: Exchange contents in register pair AF (base) with that in register pair AF’ (alternative). Exchange occurs
between base and alternative versions of the same register.

Operation: EX

(A) ↔ (A’)

(F) ↔ (F’)

Bytes: 1

Encoding:

0 0 0 0 1 0 0 0

Flag setting: (F) ↔ (F’)

EX DE, HL
Function: Exchange contents in DE for HL

Description: Exchange contents in register pair DE with that in register pair HL. Exchange is carried out on a positional
basis – register D with register H and register E with register L.

Operation: EX

(D) ↔ (H)

(E) ↔ (L)

Bytes: 1

Encoding:

1 1 1 0 1 0 1 1

Flag setting (in register F): Flags are not affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

60 CR0117 (v2.0) March 13, 2008

EX (SP), rr
Function: Exchange data on the top of the stack for that in register rr

Description: This instruction pops data from the top of the stack and stores it in register rr. The contents of register rr are
pushed onto the top of the stack. The Stack Pointer register is not changed.

 The variable rr can be any of the following registers: HL, IX, IY.

EX (SP), HL
Operation: EX

(L) ↔ ((SP))

(H) ↔ ((SP) + 1)

Bytes: 1

Encoding:

1 1 1 0 0 0 1 1

EX (SP), IX
Operation: EX

(IXL) ↔ ((SP))

(IXH) ↔ ((SP) + 1)

Bytes: 2

Encoding:

1 1 0 1 1 1 0 1

1 1 1 0 0 0 1 1

EX (SP), IY
Operation: EX

(IYL) ↔ ((SP))

(IYH) ↔ ((SP) + 1)

Bytes: 2

Encoding:

1 1 1 1 1 1 0 1

1 1 1 0 0 0 1 1

Flag setting (in register F): Flags are not affected.

EXX
Function: Exchange data in base registers for that in alternatives

Description: The data in each base register (B, C, D, E, H, L) is exchanged with the value in each corresponding
alternative register (B’, C’, D’, E’, H’, L’).

Operation: EXX

(B) ↔ (B’)

(C) ↔ (C’)

(D) ↔ (D’)

(E) ↔ (E’)

(H) ↔ (H’)

(L) ↔ (L’)

Bytes: 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 61

Encoding:

1 1 0 1 1 0 0 1

Flag setting (in register F): Flags are not affected.

HALT
Function: Halt the microprocessor

Description: This instruction suspends CPU operation and enters into a loop in which NOP instructions are executed. The
processor can leave this state only when an interrupt is received or a device reset is issued.

Operation: HALT

Bytes: 1

Encoding:

0 1 1 1 0 1 1 0

Flag setting (in register F): Flags are not affected.

IM m
Function: Set interrupt mode m

Description: This instruction sets the microcontroller's maskable interrupt mode, which defines how the processor handles
an interrupt from a peripheral device. The following three interrupt modes are available:

Mode 0 - the peripheral device requesting an interrupt can place any instruction on the data bus that it
requires to be executed by the TSK80A. For single byte instructions, the processor reads the instruction
during acknowledgement of the interrupt request. For instructions that are more than one byte in length, the
first byte is read during the interrupt acknowledgement, with the remaining byte(s) read in accordance with the
processor's normal data memory read cycle.

Mode 1 - the processor ignores all data on the data bus and issues a restart - jumping directly to address
0038h. This behavior is similar to execution of the instruction RST 38h

Mode 2 - the peripheral device requesting the interrupt supplies an 8-bit vector. This data is loaded as the low
order byte of the address bus, with the high order byte loaded from the contents of the TSK80A's Interrupt
register (I). These two bytes point to the starting address of the first instruction in the interrupt service routine.

Operation: IM

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 0 m m 1 1 0

The table below shows the interrupt modes that m can represent. The listed 2-bit value for each mode replaces the mm entry in
the encoding for the instruction.

Mode m mm

0 00

1 10

2 11

Flag setting (in register F): Flags are not affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

62 CR0117 (v2.0) March 13, 2008

IN A, (n)
Function: Input from port n

Description: The 8-bit immediate data value n is placed on the low order byte of the address bus. This value is used to
select the I/O port (within the lowest 256 bytes of I/O address space) to which an external I/O device is
connected. The contents of the Accumulator are placed on the high order byte of the address bus.

A single byte of data is read from the selected I/O port, on to the data bus, and loaded into the Accumulator.

Operation: IN

(A) ← I/O((n))

Bytes: 2

Encoding:

1 1 0 1 1 0 1 1

n

Flag setting (in register F): Flags are not affected.

IN r, (C)
Function: Input from port (C)

Description: The contents of register pair BC are placed on the address bus, (C onto the low order byte and B onto the top
order byte). The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

 A single byte of data is read from the selected I/O port, on to the data bus, and loaded into the register r.

Operation: IN

(r) ← I/O((C))

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 r r r 0 0 0

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

Flag setting (in register F):

S Set if bit 7 of the input data is 1; reset otherwise

Z Set if all 8 bits of the input data are 0; reset otherwise

H Reset

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 63

P/V Set if the parity of the input data is even; reset otherwise

N Reset

C Not affected.

INC pp
Function: Increment 16-bit register

Description: The contents of the 16-bit register pp are incremented.

Operation: INC

(pp) ← (pp) + 1

Bytes: 1

Encoding:

0 0 p p 0 0 1 1

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

HL 10

SP 11

Flag setting (in register F): Flags are not affected

INC IX
Function: Increment 16-bit register

Description: The contents of the Index register IX are incremented

Operation INC

(IX) ← (IX) + 1

Bytes 2

Encoding:

1 1 0 1 1 1 0 1

0 0 1 0 0 0 1 1

Flag setting (in register F): Flags are not affected

INC IY
Function: Increment 16-bit register

Description: The contents of the Index register IY are incremented

Operation INC

(IY) ← (IY) + 1

Bytes 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

64 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 1 1 1 1 0 1

0 0 1 0 0 0 1 1

Flag setting (in register F): Flags are not affected.

INC m
Function: Increments 8-bit data

Description: The data from the byte variable m is incremented by one and the relevant flags in the flag register (F) are
set/reset accordingly. The byte variable m can be any of the following: a register r, a data value in memory at
a location selected by the contents of the HL register, or data from memory at the location selected by the sum
of an Index register (IX or IY) and an 8-bit displacement d.

INC r
Operation: INC

(r) ← (r) + 1

Bytes: 1

Encoding:

0 0 r r r 1 0 0

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

INC (HL)
Operation: INC

((HL)) ← ((HL)) +1

Bytes: 1

Encoding:

0 0 1 1 0 1 0 0

INC (IX+d)
Operation: INC

((IX+d)) ← ((IX+d)) + 1

Bytes: 3

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 65

1 1 0 1 1 1 0 1

0 0 1 1 0 1 0 0

d

INC (IY+d)
Operation: INC

((IY+d)) ← ((IY+d)) +1

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

0 0 1 1 0 1 0 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if carry from bit 3; reset otherwise

P/V Set if data value was 7Fh before operation; reset otherwise

N Reset

C Not affected.

IND
Function: Input and decrement

Description: The contents of register pair BC are placed on the address bus, (C onto the low order byte and B onto the top
order byte). The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

One byte of data is read from the I/O port, onto the data bus and then placed into memory at the location
specified by the contents of the HL register. Both the HL and B registers are then decremented. Register B is
used as a byte counter.

Operation: IND

((HL)) ← I/O((C))

(HL) ← (HL) -1

(B) ← (B) - 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 1 0 1 0

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 = 0; reset otherwise

H Not Affected

P/V Not affected

N Set to 1

C Not Affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

66 CR0117 (v2.0) March 13, 2008

INDR
Function: Input, decrement and repeat

Description: The contents of register pair BC are placed on the address bus, (C onto the low order byte and B onto the top
order byte). The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

One byte of data is read from the I/O port, onto the data bus and then placed into memory at the location
specified by the contents of the HL register. Both the HL and B registers are then decremented. Register B is
used as a byte counter.

The content of register B is then tested. If decrementing causes the contents of B to go to zero, the next
sequential instruction is fetched, as normal. Otherwise, the Program Counter is decremented by two and the
INDR instruction is repeated. Interrupt requests can be recognized.

Operation: INDR

((HL)) ← I/O((C))

(HL) ← (HL) - 1

(B) ← (B) - 1

if (B) = 0 then

Next instruction

else

Repeat instruction

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 1 0 1 0

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 = 0; reset otherwise

H Not Affected

P/V Not affected

N Set to 1

C Not Affected.

INI
Function: Input and increment

Description: The contents of register pair BC are placed on the address bus, (C onto the low order byte and B onto the top
order byte). The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

One byte of data is read from the I/O port, onto the data bus and then placed into memory at the location
specified by the contents of the HL register. The HL register is then incremented and register B (used as a
byte counter) is decremented.

Operation: INI

((HL)) ← I/O((C))

(HL) ← (HL) + 1

(B) ← (B) - 1

Bytes: 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 67

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 0 0 1 0

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 = 0; reset otherwise

F5 Bit 5 from result (B) - 1

H Not Affected

F3 Bit 3 from result (B) - 1

P/V Not affected

N Set to 1

C Not Affected.

INIR
Function: Input, increment and repeat

Description: The contents of register pair BC are placed on the address bus, (C onto the low order byte and B onto the top
order byte). The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

One byte of data is read from the I/O port, onto the data bus and then placed into memory at the location
specified by the contents of the HL register. The HL register is then incremented and register B (used as a
byte counter) is decremented.

The content of register B is then tested. If decrementing causes the contents of B to go to zero, the next
sequential instruction is fetched, as normal. Otherwise, the Program Counter is decremented by two and the
INIR instruction is repeated. Interrupt requests can be recognized.

Operation: INIR

((HL)) ← I/O((C))

(HL) ← (HL) + 1

(B) ← (B) - 1

if (B) = 0 then

Next instruction

else

Repeat instruction

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 0 0 1 0

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 = 0; reset otherwise

H Not Affected

P/V Not affected

N Set to 1

C Not Affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

68 CR0117 (v2.0) March 13, 2008

JP (rr)
Function: Jump to address in register rr

Description: The content of the 16-bit register rr is loaded into the Program Counter (PC) and the next instruction is fetched
from this location. The variable rr can be one of the following 16-bit registers: HL, IX or IY.

JP (HL)
Operation: JP

(PC) ← (HL)

Bytes: 1

Encoding:

1 1 1 0 1 0 0 1

JP (IX)
Operation JP

(PC) ← (IX)

Bytes 2

Encoding:

1 1 0 1 1 1 0 1

1 1 1 0 1 0 0 1

JP (IY)
Operation JP

(PC) ← (IY)

Bytes 2

Encoding:

1 1 1 1 1 1 0 1

1 1 1 0 1 0 0 1

Flag setting (in register F): Flags are not affected.

JP cc nn
Function: Jump to address if condition is true.

Description: Tests condition cc. If it is TRUE, the destination address nn is loaded into the Program Counter (PC) and the
processor fetches the next instruction from this address. If the condition is FALSE, the PC is incremented as
normal and the next sequential instruction is fetched.

The table below shows the conditions that cc can represent. Each condition tests the state of a flag in the F
register. The listed 3-bit value for each condition replaces the ccc entry in the encoding for the instruction.

Condition cc Describe Relevant flag ccc

NZ Non zero Z 000

Z Zero Z 001

NC Non Carry C 010

C Carry C 011

PO Parity odd P/V 100

PE Parity even P/V 101

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 69

Condition cc Describe Relevant flag ccc

P Sign positive S 110

M Sign negative S 111

Operation: JP

If cc true: (PC)← nn

Else continue

Bytes: 3

Encoding:

1 1 c c c 0 1 0

n

n

Flag setting (in register F): Flags are not affected.

JR cc e
Function: Jump relative if condition true

Description: Tests condition cc. If it is TRUE, a displacement e is added to the contents of the Program Counter and the
next instruction is fetched from the resulting address. In this case, a jump can be made in the range of -126 to
129 bytes relative to the address of the JR instruction.

 If the condition is FALSE, the PC is incremented as normal and the next sequential instruction is fetched.

The table below shows the conditions that cc can represent (testing the C and Z flags in the F register). The
listed 2-bit value for each condition replaces the cc entry in the encoding for the instruction.

Condition cc Name Relevant Flag cc

NZ Non Zero Z 00

Z Zero Z 01

NC Non Carry C 10

C Carry C 11

Operation: JR

If cc is true then

(PC) ← (PC) + e

Else

continue

Bytes: 2

Encoding:

0 0 1 c c 0 0 0

e

Flag setting (in register F): Flags are not affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

70 CR0117 (v2.0) March 13, 2008

JP nn
Function: Jump to address

Description: The destination address nn is loaded into the Program Counter (PC) and the processor fetches the next
instruction from this address.

Operation: JP

(PC) ← nn

Bytes: 3

Encoding:

1 1 0 0 0 0 1 1

n

n

Flag setting (in register F): Flags are not affected.

JR e
Function: Jump relative

Description: A displacement e is added to the contents of the Program Counter (PC) and the next instruction is fetched
from the resulting address. In this case, a jump can be made in the range -126 to 129 bytes relative to the
address of the JR instruction.

Operation: JR

(PC) ← (PC) + e

Bytes: 2

Encoding:

0 0 0 1 1 0 0 0

e

Flag setting (in register F) : Flags are not affected

LD (aa), A
Function: Load Accumulator to memory

Description: The contents of the Accumulator are loaded into the memory location selected by the contents of the 16-bit
variable aa. The variable aa is used to represent the following: registers BC, DE, HL, a direct address nn or
the sum of an Index register (IX or IY) and an 8-bit displacement d.

LD (BC), A
Operation: LD

((BC)) ← (A)

Bytes: 1

Encoding:

0 0 0 0 0 0 1 0

LD (DE), A
Operation: LD

((DE)) ← (A)

Bytes: 1

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 71

0 0 0 1 0 0 1 0

LD (HL), A
Operation: LD

((HL)) ← (A)

Bytes: 1

Encoding:

0 1 1 1 0 1 1 1

LD (nn), A
Operation: LD

(nn) ← (A)

Bytes: 3

Encoding:

0 0 1 1 0 0 1 0

n

n

LD (IX+d), A
Operation LD

((IX+d)) ← (A)

Bytes 3

Encoding:

1 1 0 1 1 1 0 1

0 1 1 1 0 1 1 1

d

LD (IY+d), A
Operation LD

((IY+d)) ← (A)

Bytes 3

Encoding:

1 1 1 1 1 1 0 1

0 1 1 1 0 1 1 1

d

Flag setting (in register F): Flags are not affected.

LD (nn), pp
Function: Load register contents to memory location

Description: The contents of the register variable pp are loaded into the memory location selected by direct address nn.
The register variable pp can be any of the following: BC, DE, HL, SP, IX, or IY.

The low order byte of each register (C, E, L, SPL, IXL, IYL) is loaded into memory location nn and the high
order byte (B, D, H, SPH, IXH, IYH) is loaded into memory location nn + 1.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

72 CR0117 (v2.0) March 13, 2008

LD (mn), HL
Operation: LD

(nn) ← (L)

(nn + 1) ← (H)

Bytes: 3

Encoding:

0 0 1 0 0 0 1 0

n

n

LD (nn), pp
Operation: LD

(nn) ← (ppL)

(nn + 1) ← (ppH)

Bytes: 4

Encoding:

1 1 1 0 1 1 0 1

0 1 p p 0 0 1 1

n

n

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Register pp

BC 00

DE 01

HL 10

SP 11

LD (nn), IX
Operation LD

(nn) ← (IXL)

(nn + 1) ← (IXH)

Bytes 4

Encoding:

1 1 0 1 1 1 0 1

0 0 1 0 0 0 1 0

n

n

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 73

LD (nn), IY
Operation LD

(nn) ← (IYL)

(nn + 1) ← (IYH)

Bytes 4

Encoding:

1 1 1 1 1 1 0 1

0 0 1 0 0 0 1 0

n

n

Flag setting (in register F): Flags are not affected.

LD A, (aa)
Function: Load Accumulator from memory

Description: The byte data from memory is loaded into the Accumulator. The location is selected by the contents of the 16-
bit register variable aa. The variable aa is used to represent the following: registers BC, DE, HL, a direct
address nn or the sum of an Index register (IX or IY) and an 8-bit displacement d.

LD A, (BC)
Operation: LD

(A) ← ((BC))

Bytes: 1

Encoding:

0 0 0 0 1 0 1 0

LD A, (DE)
Operation: LD

(A) ← ((DE))

Bytes: 1

Encoding:

0 0 0 1 1 0 1 0

LD A, (HL)
Operation: LD

(A) ← ((HL))

Bytes: 1

Encoding:

0 1 1 1 1 1 1 0

LD A, (nn)
Operation: LD

(A) ← (nn)

Bytes: 3

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

74 CR0117 (v2.0) March 13, 2008

Encoding:

0 0 1 1 1 0 1 0

n

n

LD A, (IX+d)
Operation LD

(A) ← ((IX+d))

Bytes 3

Encoding:

1 1 0 1 1 1 0 1

0 1 1 1 1 1 1 0

d

LD A, (IY+d)
Operation LD

(A) ← ((IY+d))

Bytes 3

Encoding:

1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 0

d

Flag setting (in register F): Flags are not affected.

LD A, I
Function: Load interrupt vector to Accumulator

Description: The contents of the Interrupt register (I) are loaded into the Accumulator. In addition, the state of flip-flop IFF2
(Interrupt Enable register for maskable interrupts) is stored in the flag register (F) using the P/V flag.

Operation: LD

(A) ← (I)

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 0 1 0 1 1 1

Flag setting (in register F):

S Set if content of register I is negative; reset otherwise

Z Set if content of register I is zero; reset otherwise

H Reset

P/V Contains contents of IFF2

N Reset

C Not affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 75

LD ee, nn
Function: Load 16-bit “immediate” data into register

Description: The 16-bit “immediate” data is loaded into the 16-bit register represented by register variable ee. The register
variable ee can be any of the following: BC, DE, HL, SP, IX, IY.

 The first n operand after the Opcode is the low order byte of the “immediate” data and is loaded into the low
order byte of the destination register. The second n is the high order byte of the “immediate” data and is
loaded into the high order byte of the destination register.

LD pp , nn
Operation: LD

(ppL) ← n

(ppH) ← n

Bytes: 3

Encoding:

0 0 s s 0 0 0 1

n

n

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

HL 10

SP 11

LD IX, nn
Operation LD

(IXL) ← n

(IXH) ← n

Bytes 3

Encoding:

1 1 0 1 1 1 0 1

0 0 1 0 0 0 0 1

n

n

LD IY, nn
Operation LD

(IYL) ← n

(IYH) ← n

Bytes 3

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

76 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 1 1 1 1 0 1

0 0 1 0 0 0 0 1

n

n

Flag setting (in register F): Flags are not affected.

LD ee, (nn)
Function: Load contents of memory location to register

Description: The contents of the memory location selected by direct address nn are loaded into the register variable ee.
The register variable ee can be any of the following: BC, DE, HL, SP, IX, or IY.

The low order byte of each register (C, E, L, SPL, IXL, IYL) is loaded with the contents of memory location nn
and the high order byte (B, D, H, SPH, IXH, IYH) is loaded with the contents of memory location nn + 1. In the
destination address nn, the first n operand is the low order byte.

LD HL, (nn)
Operation: LD

(L) ← (nn)

(H) ← (nn+1)

Bytes: 3

Encoding:

0 0 1 0 1 0 1 0

n

n

LD IX, (nn)
Operation LD

(IXL) ← (nn)

(IXH) ← (nn+1)

Bytes 4

Encoding:

1 1 0 1 1 1 0 1

0 0 1 0 1 0 1 0

n

n

LD IY, (nn)
Operation LD

(IYL) ← (nn)

(IYH) ← (nn+1)

Bytes 4

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 77

Encoding:

1 1 1 1 1 1 0 1

0 0 1 0 1 0 1 0

n

n

LD pp, (nn)
Operation: LD

(ppL) ← (nn)

(ppH) ← (nn+1)

Bytes: 3

Encoding:

1 1 1 0 1 1 0 1

0 1 p p 1 0 1 1

n

n

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

HL 10

SP 11

Flag setting (in register F): Flags are not affected

LD I, A
Function: Load Accumulator to interrupt vector

Description: The contents of the Accumulator are loaded into the Interrupt register (I).

Operation: LD

(I) ← (A)

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 0 0 0 1 1 1

Flag setting (in register F): Flags are not affected.

LD m, n
Function: Load 8-bit “immediate” data

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

78 CR0117 (v2.0) March 13, 2008

Description: The 8-bit “immediate” data is loaded into the byte variable m. The byte variable m can be any of the following:
a register r, a memory location selected by the contents of the HL register, or a memory location selected by
the sum of an Index register (IX or IY) and an 8-bit displacement d.

LD r, n
Operation: LD

(r) ← n

Bytes: 2

Encoding:

0 0 r r r 1 1 0

n - “immediate” data

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

LD (HL), n
Operation: LD

((HL)) ← n

Bytes: 2

Encoding:

0 0 1 1 0 1 1 0

n - “immediate” data

LD (IX+d), n
Operation: LD

((IX+d)) ← n

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

0 0 1 1 0 1 1 0

d

n - “immediate” data

LD (IY+d), n
((IY+d)) ← n

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 79

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

0 0 1 1 0 1 1 0

d

n - “immediate” data

Flag setting (in register F): Flags are not affected.

LD m, r
Function: Load contents from register

Description: The content of register r is loaded into the byte variable m. The byte variable m can be any of the following: a
register r, data from a memory location selected by the contents of the HL register, or data from a memory
location selected by the sum of an Index register (IX or IY) and an 8-bit displacement.

 The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the
rrr entry in the encoding for the relevant instruction. In the case where the contents of a register r are being
loaded into a register r (e.g. (B) ← (C)), the registers are distinguished by the suffixes 1 and 2 and the
encoding entries will become r1r1r1 and r2r2r2.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

LD r1, r2
Operation: LD

(r1) ← (r2)

Bytes: 1

Encoding:

0 1 r1 r1 r1 r2 r2 r2

LD (HL), r
Operation: LD

((HL)) ← (r)

Bytes: 1

Encoding:

0 1 1 1 0 r r r

LD (IX+d), r
Operation: LD

((IX+d)) ← (r)

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

80 CR0117 (v2.0) March 13, 2008

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

0 1 1 1 0 r r r

d

LD (IY+d), r
((IY+d)) ← (r)

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

0 1 1 1 0 r r r

d

Flag setting (in register F): Flags are not affected.

LD r, m
Function: Load data into register

Description: The data from byte variable m is loaded into the register r. The byte variable m can be any of the following: a
register r, 8-bit “immediate data, data from a memory location selected by the contents of the HL register, or
data from a memory location selected by the sum of an Index register (IX or IY) and an 8-bit displacement.

 The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the
rrr entry in the encoding for the relevant instruction. In the case where the contents of a register r are being
loaded into a register r (e.g. (B) ← (C)), the registers are distinguished by the suffixes 1 and 2 and the
encoding entries will become r1r1r1 and r2r2r2.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

LD r1, r2
Operation: LD

(r1) ← (r2)

Bytes: 1

Encoding:

0 1 r1 r1 r1 r2 r2 r2

Note: The LD H, H opcode is reserved and cannot be used. It is used to represent a software breakpoint.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 81

LD r, n

Operation: LD

(r) ← n

Bytes: 2

Encoding:

0 0 r r r 1 1 0

n - “immediate” data

LD r, (HL)
Operation: LD

(r)← ((HL))

Bytes: 1

Encoding:

0 1 r r r 1 1 0

LD r, (IX+d)
Operation: LD

(r) ← ((IX+d))

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

0 1 r r r 1 1 0

d

LD r, (IY+d)
(r) ← ((IY+d))

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

0 1 r r r 1 1 0

d

Flag setting (in register F): Flags are not affected.

LD SP, rr
Function: Load contents of register into Stack Pointer

Description: The contents of the 16-bit register variable rr are loaded into the Stack Pointer (SP). The low and high order
bytes of the source register are loaded into the low and high order bytes of the Stack Pointer, respectively.

The register variable rr can be any of the following registers: HL, IX, IY.

LD SP, HL
Operation: LD

(SPL) ←(L)

(SPH) ← (H)

Bytes: 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

82 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 1 1 1 0 0 1

LD SP, IX
Operation: LD

(SPL) ← (IXL)

(SPH) ← (IXH)

Bytes: 2

Encoding:

1 1 0 1 1 1 0 1

1 1 1 1 1 0 0 1

LD SP, IY
Operation: LD

(SPL) ← (IYL)

(SPH) ← (IYH)

Bytes: 2

Encoding:

1 1 1 1 1 1 0 1

1 1 1 1 1 0 0 1

LDD
Function: Load and decrement

Description: The byte of data from the memory location addressed by the contents of the register HL are loaded into the
memory location addressed by the contents of the DE register. At the end of the instruction, the contents of
the HL, DE and BC (byte counter) registers are decremented.

Operation: LDD

((DE)) ← ((HL))

(HL) ← (HL) - 1

(DE) ← (DE) – 1

(BC) ← (BC) - 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 1 0 0 0

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Reset if (BC) = 0; set otherwise

N Reset

C Not affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 83

LDDR
Function: Load and decrement, repeat until (BC) = 0

Description: The byte of data from the memory location addressed by the contents of the register HL are loaded into the
memory location addressed by the contents of the DE register. The contents of the HL, DE and BC (byte
counter) registers are then decremented.

At the end of the instruction, the content of register BC is tested. If decrementing causes the contents of BC to
go to zero, the next sequential instruction is fetched, as normal. Otherwise, the Program Counter is
decremented by two and the LDDR instruction is repeated. Interrupt requests can be recognized.

Operation: LDDR

((DE)) ← ((HL))

(HL) ← (HL) - 1

(DE) ← (DE) - 1

(BC) ← (BC) - 1

if (BC) = 0 then

next instruction

else

repeat instruction

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 1 0 0 0

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Reset

N Reset

C Not affected

LDI
Function: Load and increment

Description: The byte of data from the memory location addressed by the contents of the register HL are loaded into the
memory location addressed by the contents of the DE register. At the end of the instruction, the contents of
the HL and DE registers are incremented. The contents of register BC (byte counter) are decremented.

Operation: LDI

((DE)) ← ((HL))

(HL) ← (HL) + 1

(DE) ← (DE) + 1

(BC) ← (BC) - 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 0 0 0 0

Flag setting (in register F):

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

84 CR0117 (v2.0) March 13, 2008

S Not affected

Z Not affected

H Reset

P/V Reset if (BC) = 0; set otherwise

N Reset

C Not affected.

LDIR
Function: Load and increment, repeat until (BC) = 0

Description: The byte of data from the memory location addressed by the contents of the register HL are loaded into the
memory location addressed by the contents of the DE register. The contents of the HL and DE registers are
then incremented. The contents of the BC register (byte counter) are then decremented.

At the end of the instruction, the content of register BC is tested. If decrementing causes the contents of BC to
go to zero, the next sequential instruction is fetched, as normal. Otherwise, the Program Counter is
decremented by two and the LDIR instruction is repeated. Interrupt requests can be recognized.

Operation: LDIR

((DE)) ← ((HL))

(HL) ← (HL) + 1

(DE) ← (DE) + 1

(BC) ← (BC) - 1

if (BC) = 0 then

next instruction

else

repeat instruction

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 0 0 0 0

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Reset

N Reset

C Not affected.

NEG
Function: Negate Accumulator

Description: The contents of the Accumulator are subtracted from zero (negated) and the result stored in the Accumulator.
Note that if the Accumulator contains the value 80h, there is no change, as the result of the operation is 80h.

Operation: NEG

(A) ← 0 - (A)

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 0 0 0 1 0 0

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 85

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Set if Accumulator was 80h before operation; reset otherwise

N Set

C Reset if Accumulator was 00h before operation; set otherwise.

NOP
Function: No operation

Description: The processor does not perform an operation during this instruction cycle.

Operation: NOP

Bytes: 1

Encoding:

0 0 0 0 0 0 0 0

Flag setting (in register F): Flags are not affected.

OR A, s
Function: Logical OR

Description: Performs a logical OR between the data from byte variable s and the contents of the Accumulator. The byte
variable s can be any of the following: a register r, an immediate data value n, a data value in memory at a
location selected by the contents of the HL register, or data from memory at the location selected by the sum
of an Index register (IX or IY) and an 8-bit displacement d.

OR A, r
Operation: OR

(A) ← (A) ∨ (r)

Bytes: 1

Encoding:

1 0 1 1 0 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

86 CR0117 (v2.0) March 13, 2008

OR A, n
Operation: OR

(A) ← (A) ∨ n

Bytes: 2

Encoding:

1 1 1 1 0 1 1 0

n - immediate data

OR A, (HL)
Operation: OR

(A) ← (A) ∨ ((HL))

Bytes: 1

Encoding:

1 0 1 1 0 1 1 0

OR A, (IX+d)
Operation: OR

(A) ← (A) ∨ ((IX+d))

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 1 1 0 1 1 0

d

OR A, (IY+d)
Operation: OR

(A) ← (A) ∨ ((IY+d))

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

1 0 1 1 0 1 1 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Reset.

OTDR
Function: Output, decrement and repeat

Description: The byte of data at the memory location specified by the contents of register HL is read and temporarily stored
in the CPU. Register B (byte counter) is then decremented and its contents placed on to the high order byte of

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 87

the address bus. At the same time, the contents of register C are placed onto the low order byte of the
address bus. The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

The temporarily stored byte of data is then placed on the data bus and written, through the selected port, to
the peripheral device. The HL register is then decremented.

The content of register B is then tested. If (B) = 0, the next sequential instruction is fetched, as normal.
Otherwise, the Program Counter is decremented by two and the OTDR instruction is repeated. Interrupt
requests can be recognized.

Operation: OTDR

I/O((C)) ← ((HL))

(B) ← (B) - 1

(HL) ← (HL) - 1

if (B) = 0 then

Next instruction

else

Repeat instruction

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 1 0 1 1

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 is zero; reset otherwise

H: Not Affected

P/V Not Affected

N Set to 1

C Not affected.

OTIR
Function: Output, increment and repeat

Description: The byte of data at the memory location specified by the contents of register HL is read and temporarily stored
in the CPU. Register B (byte counter) is then decremented and its contents placed on to the high order byte of
the address bus. At the same time, the contents of register C are placed onto the low order byte of the
address bus. The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

The temporarily stored byte of data is then placed on the data bus and written, through the selected port, to
the peripheral device. The HL register is then incremented

The content of register B is then tested. If (B) = 0, the next sequential instruction is fetched, as normal.
Otherwise, the Program Counter is decremented by two and the OTDR instruction is repeated. Interrupt
requests can be recognized.

Operation: OTIR

I/O((C)) ← ((HL))

(B) ← (B) - 1

(HL) ← (HL) + 1

if (B) = 0 then

Next instruction

else

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

88 CR0117 (v2.0) March 13, 2008

Repeat instruction

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 1 0 0 1 1

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 is zero; reset otherwise

H Not Affected

P/V Not Affected

N Set to 1

C Not affected.

OUT (C), r
Function: Output to port (C)

Description: The contents of register pair BC are placed on the address bus, (C onto the low order byte and B onto the top
order byte). The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

 A single byte of data is read from register r, on to the data bus, and written to the selected I/O port.

Operation: OUT

I/O((C)) ←(r)

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 r r r 0 0 1

The following table shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

Flag setting (in register F): Flags are not affected.

OUT (n), A
Function: Output to port n

Description: The 8-bit immediate data value n is placed on the low order byte of the address bus. This value is used to
select the I/O port (within the lowest 256 bytes of I/O address space) to which an external I/O device is
connected. The contents of the Accumulator are placed on the high order byte of the address bus.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 89

The contents of the Accumulator are read on to the data bus and written to the selected I/O port.

Operation: OUT

I/O((n)) ← (A)

Bytes: 2

Encoding:

1 1 0 1 0 0 1 1

n

Flag setting: (in register F): Flags are not affected.

OUTD
Function: Output and decrement

Description: The byte of data at the memory location specified by the contents of register HL is read and temporarily stored
in the CPU. Register B (byte counter) is then decremented and its contents placed on to the high order byte of
the address bus. At the same time, the contents of register C are placed onto the low order byte of the
address bus. The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

The temporarily stored byte of data is then placed on the data bus and written, through the selected port, to
the peripheral device. The HL register is then decremented.

Operation: OUTD

I/O((C)) ← ((HL))

(B) ← (B) - 1

(HL) ← (HL) - 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 1 0 1 1

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 = 0; reset otherwise

H Not Affected

P/V Not Affected

N Set to 1

C Not affected.

OUTI
Function: Output and increment

Description: The byte of data at the memory location specified by the contents of register HL is read and temporarily stored
in the CPU. Register B (byte counter) is then decremented and its contents placed on to the high order byte of
the address bus. At the same time, the contents of register C are placed onto the low order byte of the
address bus. The low order byte of the address (contents of C) is used to select the I/O port (within the lowest
256 bytes of I/O address space) to which an external I/O device is connected.

The temporarily stored byte of data is then placed on the data bus and written, through the selected port, to
the peripheral device. The HL register is then incremented.

Operation: OUTI

I/O((C)) ← ((HL))

(B) ← (B) - 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

90 CR0117 (v2.0) March 13, 2008

(HL) ← (HL) + 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

1 0 1 0 0 0 1 1

Flag setting (in register F):

S Not Affected

Z Set if (B) - 1 =0; reset otherwise

H Not Affected

P/V Not Affected

N Set to 1

C Not affected.

POP pp
Function: Pop to register

Description: Pops the top two bytes of the external memory stack and loads them into the 16-bit register pp.

The first byte of data from the stack is read from the memory location addressed by the contents of the Stack
Pointer register (SP). This data byte is loaded into the low order byte of the register pp. The Stack Pointer is
then incremented and the byte of data, at the memory location addressed by the new contents of the SP
register, is read and loaded into the high order byte of the pp register. The SP register is then incremented
again.

Note that this instruction does not check for stack underflow.

Operation: POP

(ppL) ← ((SP))

(SP) ← (SP) + 1

(ppH) ← ((SP))

(SP) ← (SP) + 1

Bytes: 1

Encoding:

1 1 p p 0 0 0 1

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Register pp

BC 00

DE 01

HL 10

AF 11

Flag setting (in register F): The flags do not change, except in the case where qq = AF

POP IX
Function: Pop to register

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 91

Description: Pops the top two bytes of the external memory stack and loads them into the 16-bit Index register; IX.

The first byte of data from the stack is read from the memory location addressed by the contents of the Stack
Pointer register (SP). This data byte is loaded into the low order byte of the IX register. The Stack Pointer is
then incremented and the byte of data, at the memory location addressed by the new contents of the SP
register, is read and loaded into the high order byte of the IX register. The SP register is then incremented
again.

Note that this instruction does not check for stack underflow

Operation POP

(IXL) ← ((SP))

(SP) ← (SP) + 1

(IXH) ← ((SP))

(SP) ← (SP) + 1

Bytes 2

Encoding:

1 1 0 1 1 1 0 1

1 1 1 0 0 0 0 1

Flag setting (in register F): Flags are not affected

POP IY
Function: Pop to register

Description: Pops the top two bytes of the external memory stack and loads them into the 16-bit Index register; IY.

The first byte of data from the stack is read from the memory location addressed by the contents of the Stack
Pointer register (SP). This data byte is loaded into the low order byte of the IY register. The Stack Pointer is
then incremented and the byte of data, at the memory location addressed by the new contents of the SP
register, is read and loaded into the high order byte of the IY register. The SP register is then incremented
again.

Note that this instruction does not check for stack underflow

Operation POP

(IYL) ← ((SP))

(SP) ← (SP) + 1

(IYH) ← ((SP))

(SP) ← (SP) + 1

Bytes 2

Encoding:

1 1 1 1 1 1 0 1

1 1 1 0 0 0 0 1

Flag setting (in register F): Flags are not affected.

PUSH pp
Function: Push to stack

Description: Pushes the contents of the 16-bit register pp to the external memory stack.

The Stack Pointer register (SP) – which contains the current location of the top of the stack – is first
decremented. The high order byte of the pp register is then loaded into the memory location addressed by the
new contents of the SP register. The Stack Pointer is then decremented again and the low order byte of the pp
register loaded into the resulting memory location that is addressed by its contents.

Note that this instruction does not check for stack overflow.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

92 CR0117 (v2.0) March 13, 2008

Operation: PUSH

(SP) ← (SP) - 1

((SP)) ← (ppH)

(SP) ← (SP) - 1

((SP)) ← (ppL)

Bytes: 1

Encoding:

1 1 q q 0 1 0 1

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Registers pp

BC 00

DE 01

HL 10

AF 11

Flag setting (in register F): The flags are not affected.

PUSH IX
Function: Push to stack

Description: Pushes the contents of the 16-bit Index register IX to the external memory stack.

The Stack Pointer register (SP) – which contains the current location of the top of the stack – is first
decremented. The high order byte of the IX register is then loaded into the memory location addressed by the
new contents of the SP register. The Stack Pointer is then decremented again and the low order byte of the IX
register loaded into the resulting memory location that is addressed by its contents.

Note that this instruction does not check for stack overflow

Operation PUSH

(SP) ← (SP) - 1

((SP)) ← (IXH)

(SP) ← (SP) - 1

((SP)) ← (IXL)

Bytes 2

Encoding:

1 1 0 1 1 1 0 1

1 1 1 0 0 1 0 1

Flag setting (in register F): Flags are not affected

PUSH IY
Function: Push to stack

Description: Pushes the contents of the 16-bit Index register IY to the external memory stack.

The Stack Pointer register (SP) – which contains the current location of the top of the stack – is first
decremented. The high order byte of the IY register is then loaded into the memory location addressed by the

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 93

new contents of the SP register. The Stack Pointer is then decremented again and the low order byte of the IY
register loaded into the resulting memory location that is addressed by its contents.

Note that this instruction does not check for stack overflow

Operation PUSH

(SP) ← (SP) - 1

((SP)) ← (IYH)

(SP) ← (SP) - 1

((SP)) ← (IYL)

Bytes 2

Encoding:

1 1 1 1 1 1 0 1

1 1 1 0 0 1 0 1

Flag setting (in register F): Flags are not affected.

RES b, m
Function: Reset bit

Description: Resets bit b of the data from byte variable m. The byte variable m can be any of the following: a register r, a
data value in memory at a location selected by the contents of the HL register, or data from memory at the
location selected by the sum of an Index register (IX or IY) and an 8-bit displacement d.

The bit position within the byte of data (bit0 – bit7) is specified by using 3-bit encoding. The table below shows this encoding for
each possible bit position. This 3-bit code replaces the bbb entry in the encoding for the instruction.

Bit position bbb

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

RES b, r
Operation: RES

(bit b of (r)) ← 0

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

1 0 b b b r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

94 CR0117 (v2.0) March 13, 2008

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

RES b, (HL)
Operation: RES

(bit b of ((HL))) ← 0

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

1 0 b b b 1 1 0

RES b, (IX+d)
Operation: RES

(bit b of ((IX+d))) ← 0

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

1 0 b b b 1 1 0

RES b, (IY+d)
Operation: RES

(bit b of ((IY+d))) ← 0

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

1 0 b b b 1 1 0

Flag setting (in register F): Flags are not affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 95

RET
Function: Return from subroutine

Description: Pops the top two bytes of the external memory stack and loads them into the Program Counter (PC).

The first byte of data from the stack is read from the memory location addressed by the contents of the Stack
Pointer register (SP). This data byte is loaded into the low order byte of the Program Counter. The Stack
Pointer is then incremented and the byte of data, at the memory location addressed by the new contents of
the SP register, is read and loaded into the high order byte of the PC. The SP register is then incremented
again and the processor fetches the new instruction from the address specified by the PC.

Operation: RET

(PCL) ← ((SP))

(SP) ← (SP) + 1

(PCH) ← ((SP))

(SP) ← (SP) + 1

Bytes: 1

Encoding:

1 1 0 0 1 0 0 1

Flag setting (in register F): Flags are not affected.

RET cc
Function: Return from subroutine if condition true

Description: Tests condition cc. If it is TRUE, the return address is popped from the external memory stack and loaded into
the Program Counter (PC).

The first byte of data from the stack is read from the memory location addressed by the contents of the Stack
Pointer register (SP). This data byte is loaded into the low order byte of the Program Counter. The Stack
Pointer is then incremented and the byte of data, at the memory location addressed by the new contents of
the SP register, is read and loaded into the high order byte of the PC. The SP register is then incremented
again and the processor fetches the new instruction from the address specified by the PC.

In the case when the condition is FALSE, the PC is incremented as normal and the next sequential instruction
is fetched.

The table below shows the conditions that cc can represent. Each condition tests the state of a flag in the F
register. The listed 3-bit value for each condition replaces the ccc entry in the encoding for the instruction.

Condition cc Description Relevant flag ccc

NZ Non Zero Z 000

Z Zero Z 001

NC Non Carry C 010

C Carry C 011

PO Parity odd P/V 100

PE Parity even P/V 101

P Sign positive S 110

M Sign negative S 111

Operation: RET

If cc true

(PCL) ← ((SP))

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

96 CR0117 (v2.0) March 13, 2008

(SP) ← (SP) + 1

(PCH) ← ((SP))

(SP) ← (SP) + 1

Else

nothing

Bytes: 1

Encoding:

1 1 c c c 0 0 0

Flag setting (in register F): Flags are not affected.

RETI
Function: Return from maskable interrupt

Description: This instruction can be used as a normal RET instruction (to restore the contents of the Program Counter).
Otherwise, it can be used to signal an I/O device that the interrupt routine has been completed.

The RETI instruction facilitates the nesting of interrupts allowing higher priority devices to temporarily suspend
the service of lower priority service routines. This instruction does not switch the interrupt enable flip-flop to the
enable state. The EI instruction should therefore be used to allow the recognition of interrupts after the
completion of the RETI instruction.

Operation: RETI

(PCL) ← ((SP))

(SP) ← (SP) + 1

(PCH) ← ((SP))

(SP) ← (SP) + 1

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 0 0 1 1 0 1

Flag setting (in register F): Flags are not affected.

RETN
Function: Return from non-maskable interrupt

Description: This instruction is used to return from a non-maskable service routine - to restore the contents of the PC and
reconstruct the state of the IFF1 flip-flop (interrupt enable register for maskable interrupts).

In a non-maskable interrupt acknowledge cycle, the contents of IFF1 are loaded to IFF2 and IFF1 is then
reset. The RETN instruction reloads the contents of IFF2 back into IFF1. In this way, the original state of
maskable interrupts (enabled or disabled) is restored.

Operation: RETN

(PCL) ← ((SP))

(SP) ← (SP) + 1

(PCH) ← ((SP))

(SP) ← (SP) + 1

(IFF1) ← (IFF2)

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 97

0 1 0 0 0 1 0 1

Flag setting (in register F): Flags are not affected.

RL m
Function: Rotate left through Carry

Description: The contents of byte variable m are rotated left by one bit position. The content of bit 7 of m is loaded into the
Carry flag (C) and the previous content of the Carry flag is loaded into bit 0 in m. All other bits in m are moved
by one position left, as shown in the diagram below.

The byte variable m can be any of the following: a register r, a data value in memory at a location selected by
the contents of the HL register, or data from memory at the location selected by the sum of an Index register
(IX or IY) and an 8-bit displacement d.

RL r
Operation: RL

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 1 0 r r r

The following table shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

RL (HL)
Operation: RL

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 1 0 1 1 0

RL (IX+d)
Operation: RL

Bytes: 4

7 . . . 0C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

98 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 1 0 1 1 0

RL (IY+d)
Operation: RL

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 1 0 1 1 0

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Value of bit 7 of the source data byte.

RLA
Function: Rotate left Accumulator through Carry

Description: The contents of the Accumulator are rotated one bit position left through the Carry flag (C). The content of bit
7 from the Accumulator is loaded into the Carry flag and the previous content of the Carry flag is loaded into
bit 0.

Operation: RLA

Bytes: 1

Encoding:

0 0 0 1 0 1 1 1

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Not affected

N Reset

C Value of bit 7 of the Accumulator.

7 . . . 0C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 99

RLC m
Function: Rotate left with Carry

Description: The contents of byte variable m are rotated left by one bit position. The content of bit 7 of m is copied into the
Carry flag (C) and also loaded into bit 0 in m. All other bits in m are moved by one position left, as shown in
the diagram below.

The byte variable m can be any of the following: a register r, a data value in memory at a location selected by
the contents of the HL register, or data from memory at the location selected by the sum of an Index register
(IX or IY) and an 8-bit displacement d.

RLC r
Operation: RLC

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 0 0 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

RLC (HL)
Operation: RLC

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 0 0 1 1 0

RLC (IX+d)
Operation: RLC

Bytes: 4

7 . . . 0C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

100 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 0 0 1 1 0

RLC (IY+d)
Operation: RLC

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 0 0 1 1 0

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Value of bit 7 of the source data byte (same as new bit 0).

RLCA
Function: Rotate left Accumulator with Carry

Description: The contents of the Accumulator are rotated one bit position left. The content of bit 7 from the Accumulator is
copied into the Carry flag and is also loaded into bit 0.

Operation: RLCA

Bytes: 1

Encoding:

0 0 0 0 0 1 1 1

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Not affected

N Reset

C Value of bit 7 of the Accumulator (same as new bit 0).

7 . . . 0C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 101

RLD
Function: Rotate left digit

Description: The byte of data from memory at the location addressed by the contents of the HL register is read and the
rotation proceeds as follows:

The contents of the four low order bits are moved into the four high order bits.

The previous contents of the four high order bits of this byte are moved into the four low order bits of the
Accumulator.

The previous contents of the four low order bits of the Accumulator are moved into the four low order bits of
the byte read from memory.

The contents of the four high order bits of the Accumulator remain unchanged.

The modified byte of data is stored at the same location in memory.

Operation: RLD

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 1 0 1 1 1 1

Flag setting (in register F):

S Set if result in Accumulator is negative; reset otherwise

Z Set if result in Accumulator is zero; reset otherwise

H Reset

P/V Set if parity of Accumulator is even after operation; reset otherwise

N Reset

C Not affected.

RR m
Function: Rotate right through Carry

Description: The contents of byte variable m are rotated right by one bit position. The content of bit 0 of m is loaded into the
Carry flag (C) and the previous content of the Carry flag is loaded into bit 7 in m. All other bits in m are moved
by one position right, as shown in the diagram below.

The byte variable m can be any of the following: a register r, a data value in memory at a location selected by
the contents of the HL register, or data from memory at the location selected by the sum of an Index register
(IX or IY) and an 8-bit displacement d.

RR r
Operation: RR

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 1 1 r r r

7 . . . 4 3 . . . 03 . . . 07 . . . 4 A (HL)

7 . . . 0 C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

102 CR0117 (v2.0) March 13, 2008

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

RR (HL)
Operation: RR

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 1 1 1 1 0

RR (IX+d)
Operation: RR

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 1 1 1 1 0

RR (IY+d)
Operation: RR

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 1 1 1 1 0

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 103

P/V Set if parity even; reset otherwise

N Reset

C Value of bit 0 of source byte.

RRA
Function: Rotate right Accumulator through Carry

Description: The contents of the Accumulator are rotated one bit position right through the Carry flag (C). The content of bit
0 from the Accumulator is loaded into the Carry flag and the previous content of the Carry flag is loaded into
bit 7.

Operation: RRA

Bytes: 1

Encoding:

0 0 0 1 1 1 1 1

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Not affected

N Reset

C Value of bit 0 of the Accumulator.

RRC m
Function: Rotate right with Carry

Description: The contents of byte variable m are rotated right by one bit position. The content of bit 0 of m is copied into the
Carry flag (C) and also loaded into bit 7 in m. All other bits in m are moved by one position right, as shown in
the diagram below.

The byte variable m can be any of the following: a register r, a data value in memory at a location selected by
the contents of the HL register, or data from memory at the location selected by the sum of an Index register
(IX or IY) and an 8-bit displacement d.

RRC r
Operation: RRC

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 0 1 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

7 . . . 0C

7 . . . 0 C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

104 CR0117 (v2.0) March 13, 2008

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

RRC (HL)
Operation: RRC

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 0 0 1 1 1 0

RRC (IX+d)
Operation: RRC

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 0 1 1 1 0

RRC (IY+d)
Operation: RRC

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 0 0 1 1 1 0

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Value of bit 0 of the source data byte (same as new bit 7).

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 105

RRCA
Function: Rotate right Accumulator with Carry

Description: The contents of the Accumulator are rotated one bit position right. The content of bit 0 from the Accumulator is
copied into the Carry flag and is also loaded into bit 7.

Operation: RLCA

Bytes: 1

Encoding:

0 0 0 0 1 1 1 1

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Not affected

N Reset

C Value of bit 0 of the Accumulator (same as new bit 7)

RRD
Function: Rotate right digit

Description: The byte of data from memory at the location addressed by the contents of the HL register is read and the
rotation proceeds as follows:

The contents of the four low order bits are moved into the four low order bits of the Accumulator.

The previous contents of the four low order bits of the Accumulator are moved into the four high order bits of
the data byte.

The previous contents of the four high order bits of the data byte are moved into the four low order bits of the
byte.

The contents of the four high order bits of the Accumulator remain unchanged.

The modified byte of data is stored at the same location in memory.

Operation: RRD

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 1 0 0 1 1 1

Flag setting (in register F):

S Set if result in Accumulator is negative; reset otherwise

Z Set if result in Accumulator is zero; reset otherwise

H Reset

7 . . . 4 3 . . . 03 . . . 07 . . . 4 A (HL)

7 . . . 0 C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

106 CR0117 (v2.0) March 13, 2008

P/V Set if parity of Accumulator is even after operation; reset otherwise

N Reset

C Not affected.

RST p
Function: Restart to p

Description: Pushes the current contents of the Program Counter (PC) to the external memory stack and then loads the
page zero memory location specified by the variable p, into the PC.

The Stack Pointer register (SP) – which contains the current location of the top of the stack – is first
decremented. The high order byte of the PC register is then loaded into the memory location addressed by the
new contents of the SP register. The Stack Pointer is then decremented again and the low order byte of the
PC register loaded into the resulting memory location that is addressed by its contents.

The page zero memory location is then loaded into the PC, with 00h loaded into the high order byte and the
value p loaded into the low order byte. The next instruction is fetched from this new address.

The variable p describes one of eight possible addresses to jump to and is specified using 3-bit encoding. The table below
shows this encoding for each possible jump address. This 3-bit code replaces the ttt entry in the encoding for the instruction.

p ttt

00h 000

08h 001

10h 010

18h 011

20h 100

28h 101

30h 110

38h 111

Operation: RST

(SP) ← (SP) - 1

((SP)) ← (PCH)

(SP) ← (SP) - 1

((SP)) ← (PCL)

(PCH) ← 00h

(PCL) ← p

Bytes: 1

Encoding:

1 1 t t t 1 1 1

Flag setting (in register F): Flags are not affected.

SBC A, s
Function: Subtract 8-bit with carry

Description: Subtracts the data from the byte variable s and the Carry flag from the contents of the Accumulator and stores
the result in the Accumulator. The byte variable s can be any of the following: a register r, an immediate data
value n, a data value in memory at a location selected by the contents of the HL register, or data from memory
at the location selected by the sum of an Index register (IX or IY) and an 8-bit displacement d.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 107

SBC A, r
Operation: SBC

(A) ← (A) - (r) - (C)

Bytes: 1

Encoding:

1 0 0 1 1 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

SBC A, n
Operation: SBC

(A) ← (A) - n - (C)

Bytes: 2

Encoding:

1 1 0 1 1 1 1 0

n - immediate data

SBC A, (HL)
Operation: SBC

(A) ← (A) - ((HL)) - (C)

Bytes: 1

Encoding:

1 0 0 1 1 1 1 0

SBC A, (IX+d)
Operation: SBC

(A) ← (A) - ((IX+d)) - (C)

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 0 1 1 1 1 0

d

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

108 CR0117 (v2.0) March 13, 2008

SBC A, (IY+d)
Operation: SBC

(A) ← (A) - ((IY+d)) - (C)

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

1 0 0 1 1 1 1 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Set if overflow; reset otherwise

N Set

C Set if borrow; reset otherwise.

SBC HL, pp
Function: Subtract 16-bit with carry

Description: Subtracts the contents of register pp and the Carry flag from the contents of the HL register. The result is
stored in the HL register.

Operation: SBC

(HL) ← (HL) - (pp) - (C)

Bytes: 2

Encoding:

1 1 1 0 1 1 0 1

0 1 p p 0 0 1 0

The table below shows the registers that pp can represent. The listed 2-bit value for each register replaces the pp entry in the
encoding for the instruction.

Register pp

BC 00

DE 01

HL 10

SP 11

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 12; reset otherwise

P/V Set if overflow; reset otherwise

N Set

C Set if borrow; reset otherwise.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 109

SCF
Function: Set Carry flag

Description: Sets the Carry flag in register F (flag register).

Operation: SCF

(C) ← 1

Bytes: 1

Encoding:

0 0 1 1 0 1 1 1

Flag setting (in register F):

S Not affected

Z Not affected

H Reset

P/V Not affected

N Reset

C Set

SET b, m
Function: Set bit

Description: Sets bit b of the data from byte variable m. The byte variable m can be any of the following: a register r, a data
value in memory at a location selected by the contents of the HL register, or data from memory at the location
selected by the sum of an Index register (IX or IY) and an 8-bit displacement d.

The bit position within the byte of data (bit0 – bit7) is specified by using 3-bit encoding. The table below shows this encoding for
each possible bit position. This 3-bit code replaces the bbb entry in the encoding for the instruction.

Bit position bbb

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

SET b, r
Operation: SET

(bit b of (r)) ← 1

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

1 1 b b b r r r

The following table shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

110 CR0117 (v2.0) March 13, 2008

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

SET b, (HL)
Operation: SET

(bit b of ((HL))) ← 1

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

1 1 b b b 1 1 0

SET b, (IX+d)
Operation: SET

(bit b of ((IX+d))) ← 1

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

1 1 b b b 1 1 0

SET b, (IY+d)
Operation: SET

(bit b of ((IY+d))) ← 1

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

1 1 b b b 1 1 0

Flag setting (in register F): Flags are not affected.

SLA m
Function: Shift left arithmetically

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 111

Description: The contents of byte variable m are arithmetically shifted left by one bit position. The content of bit 7 of m is
copied into the Carry flag (C). All other bits in m are moved by one position left, with a zero being loaded into
bit 0, as shown in the diagram below.

The byte variable m can be any of the following: a register r, a data value in memory at a location selected by
the contents of the HL register, or data from memory at the location selected by the sum of an Index register
(IX or IY) and an 8-bit displacement d.

SLA r
Operation: SLA

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 1 0 0 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

SLA (HL)
Operation: SLA

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 1 0 0 1 1 0

SLA (IX+d)
Operation: SLA

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 1 0 0 1 1 0

7 . . . 0C 0

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

112 CR0117 (v2.0) March 13, 2008

SLA (IY+d)
Operation: SLA

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 1 0 0 1 1 0

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Value of bit 7.

SRA m
Function: Shift right arithmetically

Description: The contents of byte variable m are arithmetically shifted right by one bit position. The content of bit 7 of m is
copied back into itself (and so remains unchanged), while bit 0 is copied into the Carry flag (C). All other bits in
m are moved by one position right, as shown in the diagram below.

The byte variable m can be any of the following: a register r, a data value in memory at a location selected by
the contents of the HL register, or data from memory at the location selected by the sum of an Index register
(IX or IY) and an 8-bit displacement d.

SRA r
Operation: SRA

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 1 0 1 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

7 . . . 0 C

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 113

Register rrr

H 100

L 101

A 111

SRA (HL)
Operation: SRA

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 1 0 1 1 1 0

SRA (IX+d)
Operation: SRA

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 1 0 1 1 1 0

SRA (IY+d)
Operation: SRA

Bytes: 4

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 1 0 1 1 1 0

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Value of bit 0 of the source data byte

SRL m
Function: Shift right logically

Description: The contents of byte variable m are logically shifted right by one bit position. A zero is loaded into bit 7. All
other bits in m are moved by one position right, with bit 0 being copied into the Carry flag (C), as shown in the
diagram below.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

114 CR0117 (v2.0) March 13, 2008

The byte variable m can be any of the following: a register r, a data value in memory at a location selected by
the contents of the HL register, or data from memory at the location selected by the sum of an Index register
(IX or IY) and an 8-bit displacement d.

SRL r
Operation: SRL

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 1 1 1 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

SRL (HL)
Operation: SRL

Bytes: 2

Encoding:

1 1 0 0 1 0 1 1

0 0 1 1 1 1 1 0

SRL (IX+d)
Operation: SRL

Bytes: 4

Encoding:

1 1 0 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 1 1 1 1 1 0

SRL (IY+d)
Operation: SRL

Bytes: 4

7 . . . 0 C0

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 115

Encoding:

1 1 1 1 1 1 0 1

1 1 0 0 1 0 1 1

d

0 0 1 1 1 1 1 0

Flag setting (in register F):

S Reset

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Value of bit 0 of source data byte

SUB s
Function: Subtract 8-bit data

Description: Subtracts the data from the byte variable s from the Accumulator and stores the result in the Accumulator. The
byte variable s can be any of the following: a register r, an immediate data value n, a data value in memory at
a location selected by the contents of the HL register, or data from memory at the location selected by the sum
of an Index register (IX or IY) and an 8-bit displacement d.

SUB r
Operation: SUB

(A) ← (A) - (r)

Bytes: 1

Encoding:

1 0 0 1 0 r r r

The following table shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

SUB n
Operation: SUB

(A) ← (A) - n

Bytes: 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

116 CR0117 (v2.0) March 13, 2008

Encoding:

1 1 0 1 0 1 1 0

n - immediate data

SUB (HL)
Operation: SUB

(A) ← (A) - ((HL))

Bytes: 1

Encoding:

1 0 0 1 0 1 1 0

SUB (IX+d)
Operation: SUB

(A) ← (A) - ((IX+d))

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 0 1 0 1 1 0

d

SUB (IY+d)
Operation: SUB

(A) ← (A) - ((IY+d))

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

1 0 0 1 0 1 1 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Set if borrow from bit 4; reset otherwise

P/V Set if overflow; reset otherwise

N Set

C Set if borrow; reset otherwise

TRAP (TSK80A_D only)
Function: Trap instruction

Description: The function of this instruction depends on the state of the debugenable signal. If debugenable is not active,
the instruction operates as a NOP instruction (do nothing). When debugenable is active, the TRAP instruction
forces the processor to stop and go to debug mode. In this case, the Program Counter is prohibited from
incrementing, resulting in the TRAP instruction being fetched all the time, until the debugenable signal
becomes inactive again.

Operation: TRAP

Bytes: 2

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 117

Encoding:

1 1 1 0 1 1 0 1

0 0 0 0 0 0 0 0

Flag setting (in register F): Flags are not affected

XOR s
Function: Logical XOR

Description: Performs a logical XOR between the data from byte variable s and the contents of the Accumulator. The byte
variable s can be any of the following: a register r, an immediate data value n, a data value in memory at a
location selected by the contents of the HL register, or data from memory at the location selected by the sum
of an Index register (IX or IY) and an 8-bit displacement d.

XOR r
Operation: XOR

(A) ← (A) ∀ (r)

Bytes: 1

Encoding:

1 0 1 0 1 r r r

The table below shows the registers that r can represent. The listed 3-bit value for each register replaces the rrr entry in the
encoding for the instruction.

Register rrr

B 000

C 001

D 010

E 011

H 100

L 101

A 111

XOR n
Operation: XOR

(A) ← (A) ∀ n

Bytes: 2

Encoding:

1 1 1 1 0 1 1 0

n - immediate data

XOR (HL)
Operation: XOR

(A) ← (A) ∀ ((HL))

Bytes: 1

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

118 CR0117 (v2.0) March 13, 2008

Encoding:

1 0 1 0 1 1 1 0

XOR (IX+d)
Operation: XOR

(A) ← (A) ∀ ((IX+d))

Bytes: 3

Encoding:

1 1 0 1 1 1 0 1

1 0 1 0 1 1 1 0

d

XOR (IY+d)
Operation: XOR

(A) ← (A) ∀ ((IY+d))

Bytes: 3

Encoding:

1 1 1 1 1 1 0 1

1 0 1 0 1 1 1 0

d

Flag setting (in register F):

S Set if result is negative; reset otherwise

Z Set if result is zero; reset otherwise

H Reset

P/V Set if parity even; reset otherwise

N Reset

C Reset.

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

CR0117 (v2.0) March 13, 2008 119

Instruction timing
The timing diagram of Figure 17 illustrates the signal timing involved in the execution (in sequence) of the following three
instructions – NOP, INC (HL) and OUT (C), B.

Figure 17. Example instruction cycle, including read and write

The timing diagram covers eight key regions of activity, summarized by the corresponding numbered entries that follow:

1 - An external synchronous reset is received on the RST input. When the reset line becomes inactive, the processor
starts executing

2 - Output signals M1 and MEMRD go active. Signal M1 going High characterizes a FETCH, and the instruction at
address 0000h is retrieved

3 - The processor moves into the DECODE state. The Opcode loaded into the instruction register is used to determine
the number of cycles required by the instruction

4 - The processor enters the ACTION state. The number of cycles required to complete execution of the instruction is
determined by the Decoder and passed to the state machine. Cycles are incremented using the state machine’s
internal cycle counter until this defined value is reached. The Decoder generates all internal signals required for
each cycle of the current instruction

5 - The NOP instruction has been executed – the processor proceeds to fetch a new instruction and continue its
execution of program code

6 - Fetching of the new instruction is delayed due to WAIT_ST signal being active

7 - The input data is valid and the Opcode is loaded into the instruction register. The instruction (INC (HL)) loads the
value from location (HL) in memory, increments the value and then stores the new value back at the same address.
To perform this instruction, five ACTION cycles are required.

• In cycle 2, the processor reads the value at (HL) – note that MEMRD is active for the read, while M1 is inactive
because it is not a FETCH

• In cycles 3 and 4, the value is incremented

• In cycle 5, the processor writes the new value bact to memory, at (HL). MEMWR is active for the write

8 - INC (HL) is complete and the processor loads the next new instruction – OUT (C), B. This instruction stores the
current value in internal register B, into the IO space location (C). The instruction takes two ACTION cycles. In cycle
2, the value of the register is output on the DATAO bus, and the SFRWR signal is taken active – indicating a write
transaction to the external IO space. The address bus (ADDR) value is (BC), even if the IO space is only 256 bytes
wide

1 2 3 4 5 6 7 8

@ + 3B C@ + 2@ + 1HL@ HL @

0x34 Q34 0xED 0x41Q Q 0xC3

0x00 V ALUE Q + 1 B

NOP INC (HL) PREFIX OUT (C),B. J P

FE T CH D A F F D A F D F D A F D

0 1 0 0 1 2 3 4 5 10 2 0

RST

CLK

ADD R

M 1

M EM DATAI

M EM WR

M EM R D

SFR DATAI

SFR WR

SFR RD

DATAO

WAIT_ST

IN STRU CTION

STATE

CYC LE

Legacy documentation
refer to the Altium Wiki for current information

TSK80x MCU

120 CR0117 (v2.0) March 13, 2008

Revision History

Date Version No. Revision

22-Jan-2004 1.0 New product release

09-Dec-2004 1.1 Updated to reflect new TSK80 Processor core

08-Feb-2005 1.2 Modifications to debug panel information in On-Chip Debugging section.

09-May-2005 1.3 Updated for SP4

22-Aug-2005 1.4 Minor Image Enhancements

12-Dec-2005 1.5 Path references updated for Altium Designer 6

28-Aug-2006 1.6 Fixed heading levels in Instruction Set section.

13-Mar-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:

Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

	Features
	Available Devices
	Architectural overview
	Symbols
	Pin Description
	Memory Organization
	Memory Map
	Memory Fetch Operation
	External I/O Ports Space

	Hardware Description
	Block Diagram
	Finite State Machine (FSM)
	Decoder
	ALU
	Registers
	The B, C, D and E Registers
	The H and L Registers
	The IX and IY Registers
	Program Counter (PC)
	Stack Pointer (SP)
	Interrupt Register (I)

	Bus Request Cycle
	Halt Acknowledge
	Hardware Reset (RST)

	Interrupts
	Non-Maskable Interrupt
	Maskable Interrupts
	Maskable Interrupt Modes

	On-Chip Debugging
	Adding Debug Functionality to the Standard Core
	Accessing the Debug Environment

	Instruction Set
	Instruction Set – Functional Groupings
	Hexadecimal Ordered Instructions

	Instruction Set – Detailed Reference
	ADC A, s
	ADC A, r
	ADC A, n
	ADC A, (HL)
	ADC A, (IX+d)
	ADC A, (IY+d)

	ADC HL, pp
	ADD A, s
	ADD A, r
	ADD A, n
	ADD A, (HL)
	ADD A, (IX+d)
	ADD A, (IY+d)

	ADD HL, pp
	ADD IX, pp
	ADD IY, pp
	AND A, s
	AND A, r
	AND A, n
	AND A, (HL)
	AND A, (IX+d)
	AND A, (IY+d)

	BIT b, m
	BIT b, r
	BIT b, (HL)
	BIT b, (IX+d)
	BIT b, (IY+d)

	CALL cc nn
	CALL nn
	CCF
	CP s
	CP r
	CP n
	CP (HL)
	CP (IX+d)
	CP (IY+d)

	CPD
	CPDR
	CPI
	CPIR
	CPL
	DAA
	DEC pp
	DEC IX
	DEC IY

	DEC m
	DEC r
	DEC (HL)
	DEC (IX+d)
	DEC (IY+d)

	DI
	DJNZ e
	EI
	EX AF, AF’
	EX DE, HL
	EX (SP), rr
	EX (SP), HL
	EX (SP), IX
	EX (SP), IY

	EXX
	HALT
	IM m
	IN A, (n)
	IN r, (C)
	INC pp
	INC IX
	INC IY

	INC m
	INC r
	INC (HL)
	INC (IX+d)
	INC (IY+d)

	IND
	INDR
	INI
	INIR
	JP (rr)
	JP (HL)
	JP (IX)
	JP (IY)

	JP cc nn
	JR cc e
	 JP nn
	JR e
	LD (aa), A
	LD (BC), A
	LD (DE), A
	LD (HL), A
	LD (nn), A
	LD (IX+d), A
	LD (IY+d), A

	LD (nn), pp
	LD (mn), HL
	LD (nn), pp
	LD (nn), IX
	LD (nn), IY

	LD A, (aa)
	LD A, (BC)
	LD A, (DE)
	LD A, (HL)
	LD A, (nn)
	LD A, (IX+d)
	LD A, (IY+d)

	LD A, I
	LD ee, nn
	LD pp , nn
	LD IX, nn
	LD IY, nn

	LD ee, (nn)
	LD HL, (nn)
	LD IX, (nn)
	LD IY, (nn)
	LD pp, (nn)

	LD I, A
	LD m, n
	LD r, n
	LD (HL), n
	LD (IX+d), n
	LD (IY+d), n

	LD m, r
	LD r1, r2
	LD (HL), r
	LD (IX+d), r
	LD (IY+d), r

	LD r, m
	LD r1, r2
	LD r, n
	LD r, (HL)
	LD r, (IX+d)
	LD r, (IY+d)

	LD SP, rr
	LD SP, HL
	LD SP, IX
	LD SP, IY

	LDD
	LDDR
	LDI
	LDIR
	NEG
	NOP
	OR A, s
	OR A, r
	OR A, n
	OR A, (HL)
	OR A, (IX+d)
	OR A, (IY+d)

	OTDR
	OTIR
	OUT (C), r
	OUT (n), A
	OUTD
	OUTI
	POP pp
	POP IX
	POP IY

	PUSH pp
	PUSH IX
	PUSH IY

	RES b, m
	RES b, r
	RES b, (HL)
	RES b, (IX+d)
	RES b, (IY+d)

	RET
	RET cc
	RETI
	RETN
	RL m
	RL r
	RL (HL)
	RL (IX+d)
	RL (IY+d)

	RLA
	RLC m
	RLC r
	RLC (HL)
	RLC (IX+d)
	RLC (IY+d)

	RLCA
	 RLD
	RR m
	RR r
	RR (HL)
	RR (IX+d)
	RR (IY+d)

	RRA
	RRC m
	RRC r
	RRC (HL)
	RRC (IX+d)
	RRC (IY+d)

	RRCA
	RRD
	RST p
	SBC A, s
	SBC A, r
	SBC A, n
	SBC A, (HL)
	SBC A, (IX+d)
	SBC A, (IY+d)

	SBC HL, pp
	SCF
	SET b, m
	SET b, r
	SET b, (HL)
	SET b, (IX+d)
	SET b, (IY+d)

	SLA m
	SLA r
	SLA (HL)
	SLA (IX+d)
	SLA (IY+d)

	SRA m
	SRA r
	SRA (HL)
	SRA (IX+d)
	SRA (IY+d)

	SRL m
	SRL r
	SRL (HL)
	SRL (IX+d)
	SRL (IY+d)

	SUB s
	SUB r
	SUB n
	SUB (HL)
	SUB (IX+d)
	SUB (IY+d)

	TRAP (TSK80A_D only)
	XOR s
	XOR r
	XOR n
	XOR (HL)
	XOR (IX+d)
	XOR (IY+d)

	Instruction timing

	 Revision History

