
Legacy documentation
refer to the Altium Wiki for current information

CR0116 (v2.0) March 13, 2008 1

TSK52x MCU

Summary
Core Reference
CR0116 (v2.0) March 13, 2008

The TSK52x is a fully functional, 8-bit microcontroller, incorporating the Harvard
architecture. This core reference includes architectural and hardware descriptions,
instruction sets and on-chip debugging functionality for the TSK52x family.

The TSK52x is an 8-bit embedded controller that executes all ASM51 instructions and is instruction set compatible with the
80C31.

Features
• Control Unit

− 8-bit Instruction decoder

− Reduced instruction cycle time up to 12 times.

• Arithmetic-Logic Unit

− 8 bit arithmetic and logical operations

− Boolean manipulations

− 8 x 8 bit multiplication and 8 / 8 bit division.

• 32-bit Input/Output ports

− Four 8-bit I/O ports

− Alternate port functions such as external interrupts and serial interface are separated, providing extra port pins when
compared with the standard 8051.

• Interrupt Controller

− Four Priority Levels

− 7 external interrupts

• Internal Data Memory interface

− Can address up to 256 Bytes of Data memory Space.

• External Memory interface

− Can address up to 64 KB of external Program memory space

− Can address up to 64 KB of external Data memory space

− De-multiplexed Address/Data Bus to allow easy connection to memories

− Variable length code fetch and MOVC to access fast/slow Program memory

− Variable length MOVX to access fast/slow RAM or peripherals
• Wishbone-compliant (TSK52B_W and TSK52B_WD only)

Performance
The architecture eliminates redundant bus states and implements parallel execution of fetch and execution phases. Since a
cycle is aligned with memory fetch when possible, most of the 1-byte instructions are performed in a single cycle. The TSK52x
uses 1 clock cycle per machine (instruction) cycle. This leads to a more enhanced and efficient performance with respect to the
industry standard 8051 processor working with the same clock frequency (in fact, the execution of instructions is an average
eight times faster on the TSK52x).

The standard 8051 has a 12-clock architecture. A machine (instruction) cycle needs 12 clock cycles to execute to completion
and most instructions require either one or two machine cycles. Therefore, with the exception of MUL and DIV, the 8051 uses
either 12 or 24 clock cycles for each instruction. Furthermore, each cycle in the 8051 uses two memory fetches. In many cases
the second fetch is a dummy and extra clock cycles are wasted.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

2 CR0116 (v2.0) March 13, 2008

Table 1 below shows the speed advantage of the TSK52x over the standard 8051. A speed advantage of 12 means that the
TSK52x performs the same instruction twelve times faster that the 8051.

Table 1. Speed advantage summary

Speed advantage Number of instructions Number of opcodes

24 1 1

12 27 83

9.6 2 2

8 16 38

6 44 89

4.8 1 2

4 18 31

3 2 9

Average: 8.0 Sum: 111 Sum: 255

The average speed advantage is 8.0. However, the real speed improvement seen in any system will depend on the mixture of
instructions used.

Available Devices
The following two variants of the microcontroller are available:

TSK52A - Standard version of the core

TSK52B_W - Wishbone-compliant version of the core

In addition, a corresponding debug-enabled (OCD) version of each variant is also available (TSK52A_D and TSK52B_WD
respectively).
Note: Throughout this document, differences between core variants are listed in terms of the standard core devices (TSK52A
and TSK52B_W). Unless specified otherwise, the feature/description applies to the debug-enabled version of the variant
(TSK52A_D and TSK52B_WD) in exactly the same way.
These devices can be found in the FPGA Processors integrated library (FPGA Processors.IntLib), located in the
\Library\Fpga folder of the installation.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 3

Architectural Overview

Symbols

Figure 1. TSK52x family symbols

Pin Description
The pinout of the TSK52x has not been fixed to any specific device I/O, thereby allowing flexibility with user application. The
TSK52x contains only unidirectional pins - inputs or outputs. To simplify using the bidirectional ports (PORT0-3), the schematic
symbol includes a bus pin for each direction, allowing them to be wired independently. Configuration of bus direction is
performed under program control.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

4 CR0116 (v2.0) March 13, 2008

Table 2. TSK52x Pin description

Name Type Polarity/Bus size Description

Control Signals

CLK I Rise External system clock (used for internal clock counters and all other
synchronous circuitry)

CLK90 I Rise Second external clock with a phase lag of 90 Degrees in relation to
CLK.

RST I High External system reset. A high on this pin while the external system
clock (CLK) is running resets the device

WAIT_CPU1 I High When this signal is active, operation of the CPU is halted.

Interrupt Signals

INT0 I High/Rise External interrupt 0

INT1 I High/Rise External interrupt 1

INT2 I Fall/Rise External interrupt 2

INT3 I Fall/Rise External interrupt 3

INT4 I Rise External interrupt 4

INT5 I Rise External interrupt 5

INT6 I Rise External interrupt 6

I/O Port Interface Signals

PORT0I

PORT0O

I

O

8

8

Port 0 is an 8-bit bi-directional I/O port with separated inputs and
outputs

PORT1I

PORT1O

I

O

8

8

Port 1 is an 8-bit bi-directional I/O port with separated inputs and
outputs

PORT2I

PORT2O

I

O

8

8

Port 2 is an 8-bit bi-directional I/O port with separated inputs and
outputs

PORT3I

PORT3O

I

O

8

8

Port 3 is an 8-bit bi-directional I/O port with separated inputs and
outputs

External Memory Interface Signals

MEMDATAO O 8 External memory output

MEMDATAI I 8 External memory input

MEMADDR O 16 External address bus

MEMWR O High External Data memory write enable

MEMRD O High External Data memory output enable

PSRD O High External Program memory output enable

PSWR2 O High External Program memory write enable

Wishbone Interface Signals (TSK52B_W and TSK52B_WD only)

DAT_O O 8 Data to be sent to an external Wishbone slave device

1 TSK52A and TSK52A_D only.
2 This signal is not available in the TSK52B_W.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 5

Name Type Polarity/Bus size Description

DAT_I I 8 Data received from an external Wishbone slave device

ADR_O O 8 Standard Wishbone address bus, used to select an internal register
of a connected Wishbone slave device for writing to/reading from

CYC_O O High Cycle signal. When asserted, indicates the start of a valid Wishbone
cycle

STB_O O High Strobe signal. When asserted, indicates the start of a valid
Wishbone data transfer cycle

WE_O O Level Write enable signal. Used to indicate whether the current local bus
cycle is a Read or Write cycle.

0 = Read

1 = Write

ACK_I I High Standard Wishbone device acknowledgement signal. When this
signal goes High, external Wishbone slave device has finished
execution of the requested action and the current bus cycle is
terminated

Memory Organization
Memory in the TSK52x is organized into three distinct areas:

• Program memory (external ROM)

• External Data memory (external RAM)

• Internal Data memory (internal RAM).

Program memory

FFFFh

0000h

External Data memory

8000h

4000h

C000h

00h

FFh

Internal Data memory

FFFFh

0000h

8000h

4000h

C000h

Figure 2. Memory map

Program Memory
The TSK52x can address up to 64 kB of Program memory space, from 0000h to FFFFh.

The External Bus Interface services Program memory when the PSRD signal is active. Program memory is read when the CPU
performs fetching instructions or MOVC.

After a reset has been issued, the CPU starts program execution from location 0000h.

The lower part of the Program memory includes the interrupt and reset vectors. The interrupt vectors are spaced at 8-byte
intervals, starting from 0003h, for External Interrupt 0.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

6 CR0116 (v2.0) March 13, 2008

Variable length code fetching and MOVC instructions enable access to fast or slow ROM. Three high-order bits of the CKCON
register (in the Clock Control Unit) control wait state memory cycles. Setting these wait state bits to '1' allows access to very
slow ROM.

Table 3 shows how the signals of the External Memory Interface change when wait values are set from 0 to 7. The widths of the
signals are counted in CLK cycles. The post-reset state of the CKCON register, which is in bold in the table, performs the
fetching cycles or MOVC instructions without wait states.

Table 3. Wait state memory cycle width

CKCON register Wait value Read signals width

CKCON.6 CKCON.5 CKCON.4 MEMADDR PSRD

0 0 0 0 1 1

0 0 1 1 2 2

0 1 0 2 3 3

0 1 1 3 4 4

1 0 0 4 5 5

1 0 1 5 6 6

1 1 0 6 7 7

1 1 1 7 8 8

Data Memory

External Data Memory
The TSK52x can address up to 64 KB of external Data memory space, from 0000h to FFFFh.

The External Bus Interface services Data memory when the MEMRD or MEMWR signals are active. The TSK52x writes into
external Data memory when the CPU executes MOVX @Ri,A or MOVX @DPTR,A instructions. The external Data memory is
read when the CPU executes MOVX A,@Ri or MOVX A,@DPTR instructions.

The variable length MOVX instructions enable access to fast or slow external RAM and external peripherals. Three low-order
bits of the CKCON register (in the Clock Control Unit) control stretch memory cycles. Setting these stretch bits to '1' allows
access to very slow external RAM or external peripherals.

Table 4 shows how the signals of the External Memory Interface change when stretch values are set from 0 to 7. The widths of
the signals are counted in CLK cycles. The post-reset state of the CKCON register, which is in bold in the table, performs the
MOVX instructions with a value of stretch equal to 1.

Table 4. Stretch memory cycle width

CKCON register Stretch
value

Read signals width Write signal width

CKCON.2 CKCON.1 CKCON.0 MEMADDR MEMRD MEMADDR MEMWR

0 0 0 0 1 1 2 1

0 0 1 1 2 2 3 1

0 1 0 2 3 3 4 2

0 1 1 3 4 4 5 3

1 0 0 4 5 5 6 4

1 0 1 5 6 6 7 5

1 1 0 6 7 7 8 6

1 1 1 7 8 8 9 7

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 7

There are two types of MOVX instruction, differing in whether they provide an 8-bit or 16-bit indirect address to the external Data
RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an 8-bit address.

Eight bits are sufficient for external l/O expansion decoding or a relatively small RAM array. For somewhat larger arrays there
are two methods to extend the 8-bit address to 16 bits:

• The first method is to use any output port pins to output higher-order address bits. These pins would be controlled by an
output instruction preceding the MOVX instruction

• The second method is to use the external Data memory paging register, XP. Using the XP register makes accessing data
within a page more efficient, since the page is held in the XP register and only R0 or R1 needs to be changed. With this
method, output ports are left free to serve any other purpose.

In the second type of MOVX instruction, the data pointer generates a 16-bit address.

Internal Data Memory
The TSK52x has a 512 byte block of RAM dedicated for use as internal Data memory. It should be noted, however, that
although the physical size of the block is 512 bytes, only 256 bytes can be used for internal Data memory. This RAM cannot be
upgraded in size. The internal Data memory interface is therefore not exposed to the user through the schematic symbol.

The 256 bytes of memory space (00h to FFh) can be accessed by either direct or indirect addressing (where supported). An
internal Data memory address is always 1 byte in width.

The upper 128 bytes contain the Special Function Registers (SFRs). This area of internal Data memory is accessible only by
direct addressing.

The lower 128 bytes contain work registers and bit-addressable memory. The lower 48 bytes of this area of memory space are
further divided as follows:

• The lower 32 bytes (00h – 1Fh) form four banks of eight registers (R0-R7). The RS0 and RS1 bits in the Program Status
Word register (PSW) select which bank is currently in use.

• The next 16 bytes (20h – 2Fh) form a block of bit-addressable memory space, covering the bit address range 00h-7Fh.

All of the bytes in this lower half of the internal Data memory space are accessible through direct or indirect addressing.

00h

7Fh

Alignment of Wishbone
interface to SFR space
(TSK52B_W and
TSK52B_WD only)

External RAM
00h

FFFFh

0000h

Internal RAM

7Fh

8000h

4000h

C000h

80h

FFh

SFR Space

1Fh

2Fh

20h Bit-Addressable Space

Register Banks
(4x (R0-R7))

Wishbone
Interface

Figure 3. Data memory map showing partitioning of internal RAM space

With respect to the Wishbone-compliant versions of the microcontroller (TSK52B_W and TSK52B_WD), all Wishbone peripheral
devices map into the SFR address range of the Internal RAM space – overlapping the existing SFRs. Therefore, the only
addresses available for accessing Wishbone devices are those in the SFR space that do not have any predefined function. The
predefined SFR addresses are disabled on the Wishbone interface.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

8 CR0116 (v2.0) March 13, 2008

The SFR address 80h corresponds to the address 00h on the Wishbone interface. For example, a Wishbone peripheral device
at address 08h on the Wishbone interface would be accessed in software at address 88h of the SFR space.

Special Function Registers

Special Function Registers Location
As illustrated in the previous section, Special Function Registers (SFRs) reside in the top 128 bytes of the internal RAM space.
A map of the Special Function Registers is shown in Table 5.

Table 5. Special Function Registers location

Hex\Bin X000 X001 X010 X011 X100 X101 X110 X111 Bin/Hex

F8 WBT03 WBT13 FF

F0 B F7

E8 EF

E0 ACC E7

D8 DF

D0 PSW D7

C8 CF

C0 IRCON C7

B8 IEN1 IP1 BF

B0 P3 B7

A8 IEN0 IP0 AF

A0 P2 A7

98 XP 9F

90 P1 97

88 CKCON 8F

80 P0 SP DPL DPH PCON 87

For the non-Wishbone versions of the microcontroller (TSK52A and TSK52A_D), only 18 addresses are occupied, the others
are not implemented. Read access to unimplemented addresses will return undefined data, while writes will have no effect.

For the Wishbone-compliant versions (TSK52B_W and TSK52B_WD), an additional 2 addresses are occupied by two dedicated
timing registers – WBT0 and WBT1. The remaining 108 addresses in the SFR space can be used to access any 8-bit
compatible Wishbone slave devices.

Special Function Registers Reset Values
Table 6. Special Function Registers reset values

Register Location Reset value Description

P0 80h FFh Port 0

SP 81h 07h Stack Pointer

DPL 82h 00h Data Pointer Low 0

DPH 83h 00h Data Pointer High 0

PCON 87h 00h Power Control register

3 Wishbone-compliant versions only (TSK52B_W, TSK52B_WD).

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 9

Register Location Reset value Description

CKCON 8Eh 01h Clock Control register (Stretch=1)

P1 90h FFh Port 1

XP 9Fh 00h External Data memory Paging register

P2 A0h 00h Port 2

IEN0 A8h 00h Interrupt Enable register 0

IP0 A9h 00h Interrupt Priority register 0

P3 B0h FFh Port 3

IEN1 B8h 00h Interrupt Enable register 1

IP1 B9h 00h Interrupt Priority register 1

IRCON C0h 00h Interrupt Request Control register

PSW D0h 00h Program Status Word register

ACC E0h 00h Accumulator

B F0h 00h B register

WBT04 F8h 00h Wishbone Timing register 0

WBT14 F9h 00h Wishbone Timing register 1

Accumulator (ACC)
Most instructions use the Accumulator to hold the operand. Note that the mnemonics for Accumulator-specific instructions refer
to the Accumulator as A, not ACC.

B Register
The B register is used during multiply and divide instructions. It can also be used as a scratch-pad register to hold temporary
data.

External Data memory Paging Register (XP)
The content of the XP register is loaded onto the high order byte of the memory address bus during external Data memory
access using the MOVX @Ri, A and MOVX A, @Ri instructions. The XP register is used to implement paging and can provide
access to up to 256 pages in external Data memory. Each page can contain up to 256 bytes of data – dependent on the
contents of the register Ri. Therefore the maximum addressable external Data memory space is 64KB.

When the XP register is not used, its default reset value of 00h ensures the processor will act as its TSK51x counterpart for
these two MOVX instructions, with the upper 8-bits of the memory address bus stuck at zeros.

Program Status Word Register (PSW)
Table 7. PSW register flags

MSB LSB

CY AC F0 RS1 RS0 OV F1 P

Table 8. PSW register bit functions

Bit Symbol Function

PSW.7 CY Carry flag

4 Wishbone-compliant versions only (TSK52B_W, TSK52B_WD).

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

10 CR0116 (v2.0) March 13, 2008

Bit Symbol Function

PSW.6 AC Auxiliary Carry flag for BCD operations

PSW.5 F0 General purpose Flag 0 available for user

PSW.4 RS1 Register bank select control bit 1, used to select working register bank

PSW.3 RS0 Register bank select control bit 0, used to select working register bank

PSW.2 OV Overflow flag

PSW.1 F1 General purpose Flag 1 available for user

PSW.0 P Parity flag

Bits RS1 and RS0 are used to select the working register bank as follows.

Table 9. Register Bank selection

RS1:RS0 Bank selected Location

00 Bank 0 (00h – 07h)

01 Bank 1 (08h – 0Fh)

10 Bank 2 (10h – 17h)

11 Bank 3 (18h – 1Fh)

Stack Pointer (SP)
The Stack Pointer is a 1-byte register initialized to 07h after reset. This register is incremented before PUSH and CALL
instructions, causing the stack to begin at location 08h.

Data Pointer Register (DPL and DPH)
The Data Pointer (DPTR) is 2 bytes wide. The lower byte is DPL and the higher DPH. It can be loaded as either a single 2 byte
register:

MOV DPTR,#data16)

or as two individual, single byte registers:

MOV DPL,#data8

MOV DPH,#data8.

It is generally used to access external code or data space, for example:

MOVC A,@A+DPTR or

MOVX A,@DPTR.

Program Counter (PC)
The Program Counter (PC) is 2 bytes wide and is initialized to 0000h after reset. This register is incremented during a fetch of
operation code or operation data from Program memory.

Additional Wishbone Interface Special Function Registers
The Wishbone-compliant versions of the microcontroller – the TSK52B_W and TSK52B_WD respectively – contain two
additional special function registers as part of the Wishbone Interface. These two timing registers – WBT0 and WBT1 – are used
to provide a 14-bit value to the built-in Wishbone Cycle Counter, which determines how many clock cycles the processor will
wait for an acknowledge signal from an addressed Wishbone slave device to appear at its ACK_I input, before the current data
transfer cycle is forcibly terminated.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 11

Wishbone Timing Register 0 (WBT0)
Table 10. The WBT0 register

MSB LSB

CNT5 CNT4 CNT3 CNT2 CNT1 CNT0 ACK WCCEN

Table 11. The WBT0 register bit functions

Bit Symbol Function

WBT0.7 CNT5 Counter bit 5

WBT0.6 CNT4 Counter bit 4

WBT0.5 CNT3 Counter bit 3

WBT0.4 CNT2 Counter bit 2

WBT0.3 CNT1 Counter bit 1

WBT0.2 CNT0 Counter bit 0

WBT0.1 ACK Acknowledge flag. Updated when the Wishbone Cycle Counter reaches
zero, it is used to flag how the Wishbone transmission ended:

0 = Wishbone transfer cycle terminated normally, with an acknowledge
signal received from the slave Wishbone device

1 = Wishbone transfer cycle has been forcibly terminated by the processor
due to no acknowledgement from slave Wishbone device.

WBT0.0 WCCEN Wishbone Cycle Counter Enable.

0 = Wishbone interface will wait until an acknowledge is received from an
external Wishbone device

1 = Wishbone interface will wait for an acknowledge for CNT13-0 clock
cycles, before forcibly terminating the transfer.

Wishbone Timing Register 1 (WBT1)
Table 12. The WBT1 register

MSB LSB

CNT13 CNT12 CNT11 CNT10 CNT9 CNT8 CNT7 CNT6

Table 13. The WBT1 register bit functions

Bit Symbol Function

WBT1.7 CNT13 Counter bit 13

WBT1.6 CNT12 Counter bit 12

WBT1.5 CNT11 Counter bit 11

WBT1.4 CNT10 Counter bit 10

WBT1.3 CNT9 Counter bit 9

WBT1.2 CNT8 Counter bit 8

WBT1.1 CNT7 Counter bit 7

WBT1.0 CNT6 Counter bit 6

Note: Bits 7-0 of the WBT1 register and bits 7-2 of the WBT0 register are concatenated to form the 14-bit value, CNT13-0. This
value is automatically re-loaded into the Wishbone Cycle Counter each time the processor initiates a Wishbone data transfer.
The counter starts counting down automatically when a transfer is initiated and the initial value of the counter is greater than
zero.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

12 CR0116 (v2.0) March 13, 2008

Hardware Description
The structure of the TSK52x consists of:

• Control Processor Unit

• Arithmetic Logic Unit

• Clock Control Unit

• Memory Control Unit

• RAM and SFR Control Unit

• Ports Registers Unit

• Interrupt Service Routine Unit

• Wishbone Interface (TSK52B_W and TSK52B_WD only)

Block Diagram

cycleinstr

cyclefetch instr

cyclefetch instr
PORTS

P0

P1
P2
P3

 PORT1I
 PORT2I
 PORT3I
 PORT0O

 PORT1O

 PORT2O
 PORT3O

ie0
ie1
ie2

ircon
ip1
ip0

 INT2

 INT3

 INT4

 INT5

 INT6

instrreg

acc b psw

ramdatai
ramdatao
ramaddr

ramoe
ramwe

sp

CLOCK_CONTROL
PCON CKCON

 RST
 CLK

MEMORY_CONTROL
 MEMDATAO

MEMADDR

MEMRD

PSWR

PSRD

MEMWR

MEMDATAI

PC

DPTR

 INT0
 INT1

in
te

rn
al

 s
frb

us

ISR

CONTROL_UNIT

ALU

RAM_SFR_CONTROL

IP0

IP1

IE0 IEN0

IE1 IEN1

IRCON

SP

ACC PSWB

RAM

CLK CLK90

WAIT_CPU

Wishbone
Interface DAT_I

ADR_O

STB_O
WE_O
ACK_I

CYC_O

DAT_O

WBT0

WBT1

14-bit

 Cycle Counter

Figure 4. TSK52x Block Diagram

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 13

TSK52x Engine
The core engine of the TSK52x is composed of four components:

• Control Unit

• Arithmetic Logic Unit

• Memory Control Unit

• RAM and SFR Control Unit.

The TSK52x engine allows instructions to be fetched from Program memory and to execute using either RAM or SFR.

Ports
Ports P0, P1, P2 and P3 are Special Function Registers. The contents of the SFR can be observed on the corresponding
component symbol interface pins. Writing a ‘1’ to any of the ports causes the corresponding pin to be at the high level and
writing a ‘0’ causes the corresponding pin to be held at the low level.

All four ports on the chip are bi-directional. Each of them consists of a Latch (SFR P0 to P3), an output drive and an input buffer,
so the CPU can output or read data through any of these ports if they are not used for alternate purposes.

Reset Control
All registers and flip-flops are synchronously reset by the (active high) internal reset (rst) signal. An external hardware reset
(RST) can activate the internal reset state. A high on the RST pin while the external clock is running, resets the device.

Interrupt Service Routine Unit
The TSK52x provides seven external interrupts with four priority levels. Each interrupt has its own request flag located in the
special function register IRCON or IEN1. Each interrupt requested by the corresponding flag could individually be enabled or
disabled by the enable bits in the special function register IEN0.

Interrupt Overview
When the interrupt occurs, the engine will vector to a predetermined address (see Table 26). Once interrupt service has begun,
it can be interrupted only by a higher priority interrupt. The interrupt service is terminated by a return from instruction RETI.
When a RETI instruction is performed, the processor will return to the instruction that would have been next when the interrupt
occurred.

When the interrupt condition occurs, the processor will also indicate this by setting a flag bit. This bit is set regardless of whether
the interrupt is enabled or disabled. Each interrupt flag is sampled once per machine cycle, then samples are polled by
hardware. If the sample indicates a pending interrupt when the interrupt is enabled, then the interrupt request flag is set. On the
next multi-cycle instruction the interrupt will be acknowledged by hardware, forcing an LCALL to the appropriate vector address.

Interrupt response will require a varying amount of time depending on the state of the microcontroller when the interrupt occurs.
If the microcontroller is performing an interrupt service with equal or greater priority, the new interrupt will not be invoked. In
other cases, the response time depends on the current instruction. The fastest possible response to an interrupt is 7 machine
cycles. This includes one machine cycle for detecting the interrupt and six cycles for performing the LCALL.

Interrupt-Based Special Function Registers

Interrupt Enable Register 0 (IEN0)
Table 14. The IEN0 register

MSB LSB

EAL EX6 EX5 EX4 EX3 EX2 EX1 EX0

Table 15. The IEN0 register bit functions

Bit Symbol Function

IEN0.7 EAL 0 – disable all interrupts

1 – enable all interrupts

IEN0.6 EX6 0 – disable external interrupt 6

1 – enable external interrupt 6

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

14 CR0116 (v2.0) March 13, 2008

Bit Symbol Function

IEN0.5 EX5 0 – disable external interrupt 5

1 – enable external interrupt 5

IEN0.4 EX4 0 – disable external interrupt 4

1 – enable external interrupt 4

IEN0.3 EX3 0 – disable external interrupt 3

1 – enable external interrupt 3

IEN0.2 EX2 0 – disable external interrupt 2

1 – enable external interrupt 2

IEN0.1 EX1 0 – disable external interrupt 1

1 – enable external interrupt 1

IEN0.0 EX0 0 – disable external interrupt 0

1 – enable external interrupt 0

Interrupt Enable Register 1 (IEN1)
Table 16. The IEN1 register

MSB LSB

F3 F2 I3FR I2FR IE1 IT1 IE0 IT0

Table 17. The IEN1 register bit functions

Bit Symbol Function

IEN1.7 F3 General purpose Flag 3 available for user

IEN1.6 F2 General purpose Flag 2 available for user

IEN1.5 I3FR External interrupt 3 falling/rising edge flag.

0 – external interrupt negative transition active

1 – external interrupt positive transition active

IEN1.4 I2FR External interrupt 2 falling/rising edge flag.

0 – external interrupt negative transition active

1 – external interrupt positive transition active

IEN1.3 IE1 External interrupt 1 flag

IEN1.2 IT1 External interrupt 1 type control bit.

0 – external interrupt high level active

1 – external interrupt positive transition active

IEN1.1 IE0 External interrupt 0 flag

IEN1.0 IT0 External interrupt 0 type control bit.

0 – external interrupt high level active

1 – external interrupt positive transition active

Interrupt Request Register (IRCON)
Table 18. The IRCON register

MSB LSB

F6 F5 IEX2 IEX3 IEX4 IEX5 IEX6 F4

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 15

Table 19. The IRCON register bit functions

Bit Symbol Function

IRCON.7 F6 General purpose Flag 6 available for user

IRCON.6 F5 General purpose Flag 5 available for user

IRCON.5 IEX2 External interrupt 2 edge flag

IRCON.4 IEX3 External interrupt 3 edge flag

IRCON.3 IEX4 External interrupt 4 edge flag

IRCON.2 IEX5 External interrupt 5 edge flag

IRCON.1 IEX6 External interrupt 6 edge flag

IRCON.0 F4 General purpose Flag 4 available for user

Priority Level Structure
All interrupt sources have predefined priority level.

Table 20. Priority level

External interrupt 0

External interrupt 2

External interrupt 1

External interrupt 3

External interrupt 4

External interrupt 5

External interrupt 6

Each interrupt source can be programmed individually to one of four priority levels by setting or clearing the appropriate bit in
the special function registers IP0 and IP1. If requests of the same priority level are received simultaneously, an internal polling
sequence determines which request is serviced first.

Interrupt Priority Register 0 (IP0)
Table 21. The IP0 register

MSB LSB

F7 IP0.6 IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0

Interrupt Priority Register 1 (IP1)
Table 22. The IP1 register

MSB LSB

F8 IP1.6 IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0

Note: Bit 7 of register IP0 (F7) and bit 7 of register IP1 (F8) are general purpose flags available for the user.

Table 23. Priority levels

IP1.x IP0.x Priority Level

0 0 Level0 (lowest)

0 1 Level1

1 0 Level2

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

16 CR0116 (v2.0) March 13, 2008

IP1.x IP0.x Priority Level

1 1 Level3 (highest)

Table 24. Priority level control bits

Bit Interrupt Source

IP1.0, IP0.0 External interrupt 0

IP1.1, IP0.1 External interrupt 1

IP1.2, IP0.2 External interrupt 2

IP1.3, IP0.3 External interrupt 3

IP1.4, IP0.4 External interrupt 4

IP1.5, IP0.5 External interrupt 5

IP1.6, IP0.6 External interrupt 6

Table 25. Polling sequence

External interrupt 0

External interrupt 2

External interrupt 1

External interrupt 3

External interrupt 4

External interrupt 5

External interrupt 6

Po
lli

ng
 s

eq
ue

nc
e

Interrupt Sources and Vectors
Table 26. Interrupt vectors

Interrupt Request Flags Interrupt Vector Address

IE0 – External interrupt 0 0003h

IE1 – External interrupt 1 0013h

IEX2 – External interrupt 2 004Bh

IEX3 – External interrupt 3 0053h

IEX4 – External interrupt 4 005Bh

IEX5 – External interrupt 5 0063h

IEX6 – External interrupt 6 006Bh

External Interrupt Edge Detect
The external interrupts 2 and 3 can be programmed to be negative or positive transition-activated by setting or clearing bit I2FR
or I3FR respectively, in register IEN1. The external interrupts 4, 5 and 6 are activated by a positive transition. The external
source has to hold the request pin low (high for INT2 and INT3, if it is programmed to be negative transition-active) for at least
one period of CLK. After this period, it must then be held high (low) for at least one period of CLK to ensure that the transition is
recognized and that the corresponding interrupt request flag will be set.

Wishbone Interface (TSK52B_W and TSK52B_WD)
The same internal RAM interface signals are used to connect the Wishbone Interface to the RAM and SFR Unit. On the other
side of this interface, standard Wishbone interface signals are used to connect the processor to any 8-bit compatible Wishbone
slave device.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 17

When accessing a Wishbone slave device through the Wishbone Interface, an 8-bit address is put on the ADR_O bus. Since a
maximum of 108 addresses in SFR space can be used to address external Wishbone slave devices, bit 8 of ADR_O is always
zero.

Writing to a Wishbone Slave Device
Data is written from the host microcontroller (Wishbone Master) to a Wishbone-compliant peripheral device (Wishbone Slave) in
accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can be summarized as
follows:

• The host presents an address on its ADR_O output for the register it wants to write to and a valid byte of data on its DAT_O
output. It then asserts its WE_O output to specify a Write cycle

• The slave device receives the address at its ADR_I input and prepares to receive the data

• The host asserts its STB_O and CYC_O outputs, indicating that the transfer is to begin. The slave device, monitoring its
STB_I and CYC_I inputs, reacts to this assertion by latching the byte of data appearing at its DAT_I input and asserting its
ACK_O signal – to indicate to the host that the data has been received

• The host, monitoring its ACK_I input, responds by negating the STB_O and CYC_O signals. At the same time, the slave
device negates the ACK_O signal and the data transfer cycle is naturally terminated.

Reading from a Wishbone Slave Device
Data is read by the host microcontroller (Wishbone Master) from a Wishbone-compliant peripheral device (Wishbone Slave) in
accordance with the standard Wishbone data transfer handshaking protocol. This data transfer cycle can be summarized as
follows:

• The host presents an address on its ADR_O output for the register it wishes to read. It then negates its WE_O output to
specify a Read cycle

• The slave device receives the address at its ADR_I input and prepares to transmit the data from the selected register

• The host asserts its STB_O and CYC_O outputs, indicating that the transfer is to begin. The slave device, monitoring its
STB_I and CYC_I inputs, reacts to this assertion by presenting the valid byte of data at its DAT_O output and asserting its
ACK_O signal – to indicate to the host that valid data is present

• The host, monitoring its ACK_I input, responds by latching the byte of data appearing at its DAT_I input and negating the
STB_O and CYC_O signals. At the same time, the slave device negates the ACK_O signal and the data transfer cycle is
naturally terminated.

During Wishbone transmission the processor is stopped until an acknowledgement is received from a slave device. This can be
a problem when a slave device disconnects from the Wishbone bus due to failure, leaving the processor waiting indefinitely for
an acknowledge signal that will never come. To prevent this situation from happening, the Wishbone-compliant versions of the
TSK52 have a built-in timer, that will automatically cancel a pending transmission after a given number of clock cycles. By
default, this timer is inactive when the processor starts and the processor waits until there is an acknowledge from a slave
device.

Communicating with Multiple Wishbone Slave Devices
Typically in a design, the microcontroller will need to interface to multiple Wishbone-compliant peripherals (slave devices). Each
of these peripherals may contain any number of internal registers with which to write to/read from. It is not possible to
communicate directly, and simultaneously, with each of these slave devices. A means of multiplexing must be used, allowing
the microcontroller to talk to any number of slaves over the one interface. Typically, this involves the use of a Wishbone
Decoder, as illustrated in the example image of Figure 5.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

18 CR0116 (v2.0) March 13, 2008

Figure 5. Multiplexing the Wishbone interface using a Wishbone Decoder

In the example circuit above, the Wishbone Decoder enables a single microcontroller device (TSK52B_WD) to communicate
with two Wishbone-compliant peripheral devices (a PS/2 Controller and an LCD Controller). These two peripheral Controllers, in
turn, each have two internal Wishbone registers that can be accessed by the microcontroller.

The Decoder itself is defined in an underlying VHDL file, which is used to decode the 8-bit address supplied by the
microcontroller and enable communications with the relevant slave device and register therein, accordingly (Figure 6)

Figure 6. Wishbone Decoder – under-the-bonnet code snippet

The exact configuration of a Wishbone Decoder and its underlying VHDL code, will vary depending on individual design
requirements – the number of slave devices to be addressed, the number of accessible registers within each slave, etc – but the
basic principle remains the same.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 19

On-Chip Debugging
The debug-enabled versions of the microcontroller (TSK52A_D and TSK52B_WD) provide the following set of additional
functional features that facilitate real-time debugging of the microcontroller:

• Reset, Go, Halt processor control

• Single or multi-step debugging

• Read-write access for internal processor registers including SFRs and PC

• Read-write access for Program memory and Data memory

• Unlimited software breakpoints

Adding Debug Functionality to a Standard Core Variant
For the TSK52A_D and TSK52BW_D (henceforth referred to as TSK52xD) debug functionality is provided through the use of an
On-Chip Debug System unit (OCDS). The simplified block diagram of Figure 7 shows the connection between this unit and the
standard TSK52A core.

 TCK

 TMS

 TDI

 TDO

Standard
JTAG

interface

MCU
symbol

pins

TSK52xD OCD Microcontroller

Microcontroller
Core

(TSK52A)

OCDS Interface

OCDS Control
and

Debug Port

Figure 7. Simplified TSK52xD block diagram

The host computer is connected to the target core using the IEEE 1149.1 (JTAG) standard interface. This is the physical
interface, providing connection to physical pins of the FPGA device in which the core has been embedded.

The Nexus 5001 standard is used as the protocol for communications between the host and all devices that are debug-enabled
with respect to this protocol. This includes all OCD-version microcontrollers, as well as other Nexus-compliant devices such as
frequency generators, logic analyzers, counters, etc.

All such devices are connected in a chain – the Soft Devices chain – which is determined when the design has been
implemented within the target FPGA device and presents in the Devices view (Figure 8). It is not a physical chain, in the sense
that you can see no external wiring – the connections required between the Nexus-enabled devices are made internal to the
FPGA itself.

Figure 8. Nexus-enabled microcontrollers appearing in the Soft Devices chain

For microcontrollers such as the TSK52xD, the Nexus protocol enables you to debug the core through communication with the
OCDS Unit.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

20 CR0116 (v2.0) March 13, 2008

Accessing the Debug Environment
Debugging of the embedded code within an OCD-version microcontroller is carried out by starting a debug session. Prior to
starting the session, you must ensure that the design, including one or more OCD-version microcontrollers and their respective
embedded code, has been downloaded to the target physical FPGA device.

To start a debug session for the embedded code of a specific microcontroller in the design, simply right-click on the icon for that
microcontroller, in the Soft Devices region of the view, and choose the Debug command from the pop-up menu that appears.
Alternatively, click on the icon for the microcontroller (to focus it) and choose Processors » Pn » Debug from the main menus,
where n corresponds to the number for the processor in the Soft Devices chain.

The embedded project for the software running in the processor will initially be recompiled and the debug session will
commence. The relevant source code document (either Assembly or C) will be opened and the current execution point will be
set to the first line of executable code (see Figure 9).
Note: You can have multiple debug sessions running simultaneously – one per embedded software project associated with a
microcontroller in the Soft Devices chain.

Figure 9. Starting an embedded code debug session.

The debug environment offers the full suite of tools you would expect to see in order to efficiently debug the embedded code.
These features include:

• Setting Breakpoints

• Adding Watches
• Stepping into and over at both the source (*.C) and instruction (*.asm) level

• Reset, Run and Halt code execution

• Run to cursor
All of these and other feature commands can be accessed from the Debug menu or the associated Debug toolbar.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 21

Various workspace panels are accessible in the debug environment, allowing you to view/control code-specific features, such as
Breakpoints, Watches and Local variables, as well as information specific to the microcontroller in which the code is running,
such as memory spaces and registers.
These panels can be accessed from the View » Workspace Panels » Embedded sub menu, or by clicking on the Embedded
button at the bottom of the application window and choosing the required panel from the subsequent pop-up menu.

Figure 10. Workspace panels offering code-specific information and controls

Figure 11. Workspace panels offering information specific to the parent processor.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

22 CR0116 (v2.0) March 13, 2008

Full-feature debugging is of course enjoyed at the source code level – from within the source code file itself. To a lesser extent,
debugging can also be carried out from a dedicated debug panel for the processor. To access5 this panel, first double-click on
the icon representing the microcontroller to be debugged, in the Soft Devices region of the view. The Instrument Rack – Soft
Devices panel will appear, with the chosen processor instrument added to the rack (Figure 12).

Figure 12. Accessing debug features from the microcontroller's instrument panel

Note: Each core microcontroller that you have included in the design will appear, when double-clicked, as an Instrument in the
rack (along with any other Nexus-enabled devices).
The Nexus Debugger button provides access to the associated debug panel (Figure 13), which in turn allows you to interrogate
and to a lighter extent control, debugging of the processor and its embedded code, notably with respect to the microcontroller
registers and memory.

One key feature of the debug panel is that it enables you to specify (and therefore change) the embedded code (HEX file) that is
downloaded to the microcontroller, quickly and efficiently.

For more information on the content and use of processor debug panels, press F1 when the
cursor is over one of these panels.

For further information regarding the use of the embedded tools for the TSK52x, see the Using
the TSK51x/TSK52x Embedded Tools guide.

For comprehensive information with respect to the embedded tools available for the TSK52x,
see the TSK51x/TSK52x Embedded Tools Reference.

5 The debug panels for each of the debug-enabled microcontrollers are standard panels and, as such, can be readily accessed from the View »
Workspace Panels » Instruments sub-menu, or by clicking on the Instruments button at the bottom of the application window and choosing
the required panel – for the processor you wish to debug – from the subsequent pop-up menu.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 23

Figure 13. Processor debugging using an associated processor debug panel.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

24 CR0116 (v2.0) March 13, 2008

Instruction Set
All TSK52x instructions are binary code compatible with the TSK51 processor.

Table 27. Notes on data addressing modes

Rn Working register R0-R7

direct 256 internal RAM locations, any Special Function Registers

@Ri Indirect internal or external RAM location addressed by register R0 or R1

#data 8-bit constant included in instruction

#data16 16-bit constant included as bytes 2 and 3 of instruction

bit any bit-addressable l/O pin, control or status bit

A Accumulator

Table 28. Notes on program addressing modes

addr16 Destination address for LCALL and LJMP may be anywhere within the 64KB of
Program memory address space.

addr11 Destination address for ACALL and AJMP will be within the same 2KB page of Program
memory as the first byte of the following instruction.

rel SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/-128 bytes
relative to the first byte of the following instruction

Instruction Set – Functional Groupings
Table 29. Arithmetic operations

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

ADD A,#data Add immediate data to Accumulator 24 2 2

ADD A,@Ri Add indirect RAM to Accumulator 26-27 1 2

ADD A,direct Add direct byte to Accumulator 25 2 2

ADD A,Rn Add register to Accumulator 28-2F 1 1

ADDC A,#data Add immediate data to Accumulator with
carry flag

34 2 2

ADDC A,@Ri Add indirect RAM to Accumulator with
carry flag

36-37 1 2

ADDC A,direct Add direct byte to Accumulator with
carry flag

35 2 2

ADDC A,Rn Add register to Accumulator with carry
flag

38-3F 1 1

DEC @Ri Decrement indirect RAM 16-17 1 3

DEC A Decrement Accumulator 14 1 1

DEC direct Decrement direct byte 15 2 3

DEC Rn Decrement register 18-1F 1 2

DIV AB Divide A by B 84 1 6

INC @Ri Increment indirect RAM 06-07 1 3

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 25

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

INC A Increment Accumulator 04 1 1

INC direct Increment direct byte 05 2 3

INC DPTR Increment data pointer A3 1 1

INC Rn Increment register 08-0F 1 2

MUL AB Multiply A and B A4 1 2

SUBB A,#data Subtract immediate data from
Accumulator with borrow

94 2 2

SUBB A,@Ri Subtract indirect RAM from Accumulator
with borrow

96-97 1 2

SUBB A,direct Subtract direct byte from Accumulator
with borrow

95 2 2

SUBB A,Rn Subtract register from Accumulator with
borrow

98-9F 1 1

DA A Decimal adjust Accumulator D4 1 1

Table 30. Logic operations

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

ANL A,#data AND immediate data to Accumulator 54 2 2

ANL A,@Ri AND indirect RAM to Accumulator 56-57 1 2

ANL A,direct AND direct byte to Accumulator 55 2 2

ANL A,Rn AND register to Accumulator 58-5F 1 1

ANL direct,#data AND immediate data to direct byte 53 3 3

ANL direct,A AND Accumulator to direct byte 52 2 3

CLR A Clear Accumulator E4 1 1

CPL A Complement Accumulator F4 1 1

ORL A,#data OR immediate data to Accumulator 44 2 2

ORL A,@Ri OR indirect RAM to Accumulator 46-47 1 2

ORL A,direct OR direct byte to Accumulator 45 2 2

ORL A,Rn OR register to Accumulator 48-4F 1 1

ORL direct,#data OR immediate data to direct byte 43 3 3

ORL direct,A OR A to direct byte 42 2 3

RL A Rotate Accumulator left 23 1 1

RLC A Rotate Accumulator left through carry 33 1 1

RR A Rotate Accumulator right 03 1 1

RRC A Rotate Accumulator right through carry 13 1 1

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

26 CR0116 (v2.0) March 13, 2008

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

SWAP A Swap nibbles within Accumulator C4 1 1

XRL A,#data Exclusive OR immediate data to
Accumulator

64 2 2

XRL A,@Ri Exclusive OR indirect RAM to
Accumulator

66-67 1 2

XRL A,direct Exclusive OR direct byte to Accumulator 65 2 2

XRL A,Rn Exclusive OR register to Accumulator 68-6F 1 1

XRL direct,#data Exclusive OR immediate data to direct
byte

63 3 3

XRL direct,A Exclusive OR Accumulator to direct byte 62 2 3

Table 31. Data transfer

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

MOV @Ri,#data Move immediate data to indirect RAM 76-77 2 3

MOV @Ri,A Move Accumulator to indirect RAM F6-F7 1 3

MOV @Ri,direct Move direct byte to indirect RAM A6-A7 2 5

MOV A,#data Move immediate data to Accumulator 74 2 2

MOV A,@Ri Move indirect RAM to Accumulator E6-E7 1 2

MOV A,direct Move direct byte to Accumulator E5 2 2

MOV A,Rn Move register to Accumulator E8-EF 1 1

MOV direct,#data Move immediate data to direct byte 75 3 3

MOV direct,@Ri Move indirect RAM to direct byte 86-87 2 4

MOV direct,A Move Accumulator to direct byte F5 2 3

MOV direct,Rn Move register to direct byte 88-8F 2 3

MOV
direct1,direct2

Move direct byte to direct byte 85 3 4

MOV
DPTR,#data16

Load data pointer with a 16-bit constant 90 3 3

MOV Rn,#data Move immediate data to register 78-7F 2 2

MOV Rn,A Move Accumulator to register F8-FF 1 2

MOV Rn,direct Move direct byte to register A8-AF 2 4

MOVC
A,@A+DPTR

Move code byte relative to DPTR to
Accumulator

93 1 3

MOVC A,@A+PC Move code byte relative to PC to
Accumulator

83 1 3

MOVX @DPTR,A Move Accumulator to external RAM (16-
bit addr.)

F0 1 4-11

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 27

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

MOVX @Ri,A Move Accumulator to external RAM (8-
bit addr.)

F2-F3 1 4-11

MOVX A,@DPTR Move external RAM (16-bit addr.) to
Accumulator

E0 1 3-10

MOVX A,@Ri Move external RAM (8-bit addr.) to
Accumulator

E2-E3 1 3-10

POP direct Pop direct byte from stack D0 2 3

PUSH direct Push direct byte onto stack C0 2 4

XCH A,@Ri Exchange indirect RAM with
Accumulator

C6-C7 1 3

XCH A,direct Exchange direct byte with Accumulator C5 2 3

XCH A,Rn Exchange register with Accumulator C8-CF 1 2

XCHD A,@Ri Exchange low-order nibble of indirect
RAM with Accumulator

D6-D7 1 3

Table 32. Program branches

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

ACALL addr11 Absolute subroutine call D1 2 6

AJMP addr11 Absolute jump E1 2 3

CJNE
@Ri,#data,rel

Compare immed. to ind. and jump if not
equal

B6-B7 3 4

CJNE A,#data, rel Compare immediate to Accumulator and
jump if not equal

B4 3 4

CJNE A,direct,rel Compare direct byte to Accumulator and
jump if not equal

B5 3 4

CJNE Rn,#data rel Compare immed. to reg. and jump if not
equal

B8-BF 3 4

DJNZ direct Decrement direct byte and jump if not
zero

D5 3 4

DJNZ Rn Decrement register and jump if not zero D8-DF 2 3

JB bit,rel Jump if direct bit is set 20 3 4

JBC bit,rel Jump if direct bit is set and clear bit 10 3 4

JC rel Jump if carry flag is set 40 2 3

JMP @A+DPTR Jump indirect relative to the DPTR 73 1 2

JNB bit,rel Jump if direct bit is not set 30 3 4

JNC bit,rel Jump if carry flag is not set 50 2 3

JNZ rel Jump if Accumulator is not zero 70 2 3

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

28 CR0116 (v2.0) March 13, 2008

Mnemonic Description Hex
Opcode

Width
(in

bytes)

No. of Instruction
Cycles for
execution

JZ rel Jump if Accumulator is zero 60 2 3

LCALL addr16 Long subroutine call 12 3 6

LJMP addr16 Long jump 02 3 4

NOP No operation 00 1 1

RET From subroutine 22 1 4

RETI From interrupt 32 1 4

SJMP rel Short jump (relative addr.) 80 2 3

Table 33. Boolean manipulation

Mnemonic Description Hex
Opcode

Width (in
bytes)

No. of Instruction
Cycles for
execution

ANL C,/bit AND complement of direct bit to carry flag B0 2 3

ANL C,bit AND direct bit to carry flag 82 2 3

CLR bit Clear direct bit C2 2 3

CLR C Clear carry flag C3 1 1

CPL bit Complement direct bit B2 2 3

CPL C Complement carry flag B3 1 2

MOV bit,C Move carry flag to direct bit 92 2 3

MOV C,bit Move direct bit to carry flag A2 2 3

ORL C,/bit OR complement of direct bit to carry flag A0 2 3

ORL C,bit OR direct bit to carry flag 72 2 3

SETB bit Set direct bit D2 2 3

SETB C Set carry flag D3 1 1

Hexadecimal Ordered Instructions
Table 34. Instruction Set in hexadecimal order

Opcode Mnemonic Opcode Mnemonic

00h NOP 10 H JBC bit,rel

01h AJMP addr11 11 H ACALL addr11

02h LJMP addr16 12 H LCALL addr16

03h RR A 13h RRC A

04h INC A 14h DEC A

05h INC direct 15h DEC direct

06h INC @R0 16h DEC @R0

07h INC @R1 17h DEC @R1

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 29

Opcode Mnemonic Opcode Mnemonic

08h INC R0 18h DEC R0

09h INC R1 19h DEC R1

0Ah INC R2 1Ah DEC R2

0Bh INC R3 1Bh DEC R3

0Ch INC R4 1Ch DEC R4

0Dh INC R5 1Dh DEC R5

0Eh INC R6 1Eh DEC R6

0Fh INC R7 1Fh DEC R7

20h JB bit.rel 30h JNB bit.rel

21h AJMP addr11 31h ACALL addr11

22h RET 32h RETI

23h RL A 33h RLC A

24h ADD A,#data 34h ADDC A,#data

25h ADD A,direct 35h ADDC A,direct

26h ADD A,@R0 36h ADDC A,@R0

27h ADD A,@R1 37h ADDC A,@R1

28h ADD A,R0 38h ADDC A,R0

29h ADD A,R1 39h ADDC A,R1

2Ah ADD A,R2 3Ah ADDC A,R2

2Bh ADD A,R3 3Bh ADDC A,R3

2Ch ADD A,R4 3Ch ADDC A,R4

2Dh ADD A,R5 3Dh ADDC A,R5

2Eh ADD A,R6 3Eh ADDC A,R6

2Fh ADD A,R7 3Fh ADDC A,R7

40h JC rel 50h JNC rel

41h AJMP addr11 51h ACALL addr11

42h ORL direct,A 52h ANL direct,A

43h ORL direct,#data 53h ANL direct,#data

44h ORL A,#data 54h ANL A,#data

45h ORL A,direct 55h ANL A,direct

46h ORL A,@R0 56h ANL A,@R0

47h ORL A,@R1 57h ANL A,@R1

48h ORL A,R0 58h ANL A,R0

49h ORL A,R1 59h ANL A,R1

4Ah ORL A,R2 5Ah ANL A,R2

4Bh ORL A,R3 5Bh ANL A,R3

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

30 CR0116 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

4Ch ORL A,R4 5Ch ANL A,R4

4Dh ORL A,R5 5Dh ANL A,R5

4Eh ORL A,R6 5Eh ANL A,R6

4Fh ORL A,R7 5Fh ANL A,R7

60h JZ rel 70h JNZ rel

61h AJMP addr11 71h ACALL addr11

62h XRL direct,A 72h ORL C,bit

63h XRL direct,#data 73h JMP @A+DPTR

64h XRL A,#data 74h MOV A,#data

65h XRL A,direct 75h MOV direct,#data

66h XRL A,@R0 76h MOV @R0,#data

67h XRL A,@R1 77h MOV @R1,#data

68h XRL A,R0 78h MOV R0.#data

69h XRL A,R1 79h MOV R1.#data

6Ah XRL A,R2 7Ah MOV R2.#data

6Bh XRL A,R3 7Bh MOV R3.#data

6Ch XRL A,R4 7Ch MOV R4.#data

6Dh XRL A,R5 7Dh MOV R5.#data

6Eh XRL A,R6 7Eh MOV R6.#data

6Fh XRL A,R7 7Fh MOV R7.#data

80h SJMP rel 90h MOV DPTR,#data16

81h AJMP addr11 91h ACALL addr11

82h ANL C,bit 92h MOV bit,C

83h MOVC A,@A+PC 93h MOVC A,@A+DPTR

84h DIV AB 94h SUBB A,#data

85h MOV direct,direct 95h SUBB A,direct

86h MOV direct,@R0 96h SUBB A,@R0

87h MOV direct,@R1 97h SUBB A,@R1

88h MOV direct,R0 98h SUBB A,R0

89h MOV direct,R1 99h SUBB A,R1

8Ah MOV direct,R2 9Ah SUBB A,R2

8Bh MOV direct,R3 9Bh SUBB A,R3

8Ch MOV direct,R4 9Ch SUBB A,R4

8Dh MOV direct,R5 9Dh SUBB A,R5

8Eh MOV direct,R6 9Eh SUBB A,R6

8Fh MOV direct,R7 9Fh SUBB A,R7

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 31

Opcode Mnemonic Opcode Mnemonic

A0h ORL C,/bit B0h ANL C,/bit

A1h AJMP addr11 B1h ACALL addr11

A2h MOV C,bit B2h CPL bit

A3h INC DPTR B3h CPL C

A4h MUL AB B4h CJNE A,#data,rel

A5h - B5h CJNE A,direct,rel

A6h MOV @R0,direct B6h CJNE @R0,#data,rel

A7h MOV @R1,direct B7h CJNE @R1,#data,rel

A8h MOV R0,direct B8h CJNE R0,#data,rel

A9h MOV R1,direct B9h CJNE R1,#data,rel

AAh MOV R2,direct BAh CJNE R2,#data,rel

ABh MOV R3,direct BBh CJNE R3,#data,rel

ACh MOV R4,direct BCh CJNE R4,#data,rel

ADh MOV R5,direct BDh CJNE R5,#data,rel

AEh MOV R6,direct BEh CJNE R6,#data,rel

AFh MOV R7,direct BFh CJNE R7,#data,rel

C0h PUSH direct D0h POP direct

C1h AJMP addr11 D1h ACALL addr11

C2h CLR bit D2h SETB bit

C3h CLR C D3h SETB C

C4h SWAP A D4h DA A

C5h XCH A,direct D5h DJNZ direct,rel

C6h XCH A,@R0 D6h XCHD A,@R0

C7h XCH A,@R1 D7h XCHD A,@R1

C8h XCH A,R0 D8h DJNZ R0,rel

C9h XCH A,R1 D9h DJNZ R1,rel

CAh XCH A,R2 DAh DJNZ R2,rel

CBh XCH A,R3 DBh DJNZ R3,rel

CCh XCH A,R4 DCh DJNZ R4,rel

CDh XCH A,R5 DDh DJNZ R5,rel

CEh XCH A,R6 DEh DJNZ R6,rel

CFh XCH A,R7 DFh DJNZ R7,rel

E0h MOVX A,@DPTR F0h MOVX @DPTR,A

E1h AJMP addr11 F1h ACALL addr11

E2h MOVX A,@R0 F2h MOVX @R0,A

E3h MOVX A,@R1 F3h MOVX @R1,A

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

32 CR0116 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

E4h CLR A F4h CPL A

E5h MOV A,direct F5h MOV direct,A

E6h MOV A,@R0 F6h MOV @R0,A

E7h MOV A,@R1 F7h MOV @R1,A

E8h MOV A,R0 F8h MOV R0,A

E9h MOV A,R1 F9h MOV R1,A

EAh MOV A,R2 FAh MOV R2,A

EBh MOV A,R3 FBh MOV R3,A

ECh MOV A,R4 FCh MOV R4,A

EDh MOV A,R5 FDh MOV R5,A

EEh MOV A,R6 FEh MOV R6,A

EFh MOV A,R7 FFh MOV R7,A

Instruction Set – Detailed Reference
A brief example of how the instruction might be used is given as well as its effect on the PSW flags.

Only the carry, auxiliary carry, and overflow flags are discussed. The parity bit is always computed from the actual content of the
accumulator.
Similarly, instructions, which alter directly addressed registers, could affect the other status flags if the instruction is applied to
the PSW. Status flags can also be modified by bit manipulation.

In the following detailed instruction set listing, @Ri is an indirect internal or external RAM location addressed by register R0 or
R1. When this operand is used, the encoding for the instruction contains an entry ‘I’. This will be replaced by a 0 or 1, depending
on whether the register used is R0 or R1 respectively.

Similarly, the operand Rn can represent any of the eight working registers (R0-R7). The table below shows the registers that Rn
can represent. The listed 3-bit value for each register replaces the rrr entry in the encoding for an instruction that uses this
operand.

Register rrr

R0 000

R1 001

R2 010

R3 011

R4 100

R5 101

R6 110

R7 111

ACALL addr11
Function: Absolute call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC
twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order
byte first) and increments the stack pointer twice. The destination address is obtained by successively
concatenating the five high-order bits of the incremented PC, op code bits 7-5, and the second byte of the
instruction. The subroutine called must therefore start within the same 2K block of Program memory as the
first byte of the instruction following ACALL. No flags are affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 33

Operation: ACALL

(PC) ← (PC) + 2

(SP) ← (SP) + 1

((SP)) ← (PC7-0)

(SP) ← (SP) + 1

((SP)) ← (PC15-8)

(PC10-0) ← page address

Bytes: 2

Encoding:

a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

ADD A, <src-byte>
Function: Add

Description: ADD adds the byte variable indicated to the accumulator, leaving the result in the accumulator. The carry and
auxiliary carry flags are set, respectively, if there is a carry out of bit 7 or bit 3, and cleared otherwise. When
adding unsigned integers, the carry flag indicates an overflow occurred. OV is set if there is a carry out of bit 6
but not out of bit 7, or a carry out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed
integers, OV indicates a negative number produced as the sum of two positive operands, or a positive sum
from two negative operands. Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate.

ADD A, Rn
Operation: ADD

(A) ← (A) + (Rn)

Bytes: 1

Encoding:

0 0 1 0 1 r r r

ADD A, direct
Operation: ADD

(A) ← (A) + (direct)

Bytes: 2

Encoding:

0 0 1 0 0 1 0 1 direct address

ADD A, @Ri
Operation: ADD

(A) ← (A) + ((Ri))

Bytes: 1

Encoding:

0 0 1 0 0 1 1 i

ADD A, #data
Operation: ADD

(A) ← (A) + #data

Bytes: 2

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

34 CR0116 (v2.0) March 13, 2008

0 0 1 0 0 1 0 0 immediate data

ADDC A, < src-byte>
Function: Add with carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving
the result in the Accumulator. The carry and auxiliary carry flags are set, respectively, if there is a carry out of
bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow
occurred. OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not out of bit 6;
otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum
of two positive operands or a positive sum from two negative operands. Four source operand-addressing
modes are allowed: register, direct, register- indirect, or immediate.

ADDC A, Rn
Operation: ADDC

(A) ← (A) + (C) + (Rn)

Bytes: 1

Encoding:

0 0 1 1 1 r r r

ADDC A, direct
Operation: ADDC

(A) ← (A) + (C) + (direct)

Bytes: 2

Encoding:

0 0 1 1 0 1 0 1 direct address

ADDC A, @Ri
Operation: ADDC

(A) ← (A) + (C) + ((Ri))

Bytes: 1

Encoding:

0 0 1 1 0 1 1 i

ADDC A, #data
Operation: ADDC

(A) ← (A) + (C) + #data

Bytes: 2

Encoding:

0 0 1 1 0 1 0 0 immediate data

AJMP addr11
Function: Absolute jump

Description: AJMP transfers program execution to the indicated address, which is formed at run- time by concatenating the
high-order five bits of the PC (after incrementing the PC twice), op code bits 7-5, and the second byte of the
instruction. The destination must therefore be within the same 2K block of Program memory as the first byte of
the instruction following AJMP.

Operation: AJM P

(PC) ← (PC) + 2

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 35

(PC10-0) ← page address

Bytes: 2

Encoding:

a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

ANL <dest-byte>, <src-byte>
Function: Logical AND for byte variables

Description: ANL performs the bit wise logical AND operation between the variables indicated and stores the result in the
destination variable. No flags are affected (except P (Parity bit), if <dest-byte> = A). The two operands allow
six addressing mode combinations. When the destination is the Accumulator, the source can use register,
direct, register-indirect, or immediate addressing; when the destination is a direct address, the source can be
the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

ANL A,Rn
Operation: ANL

(A) ← (A) ^ (Rn)

Bytes: 1

Encoding:

0 1 0 1 1 r r r

ANL A,direct
Operation: ANL

(A) ← (A) ^ (direct)

Bytes: 2

Encoding:

0 1 0 1 0 1 0 1 direct address

ANL A, @Ri
Operation: ANL

(A) ← (A) ^ ((Ri))

Bytes: 1

Encoding:

0 1 0 1 0 1 1 i

ANL A, #data
Operation: ANL

(A) ← (A) ^ #data

Bytes: 2

Encoding:

0 1 0 1 0 1 0 0 immediate data

ANL direct,A
Operation: ANL

 (direct) ← (direct) ^ (A)

Bytes: 2

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

36 CR0116 (v2.0) March 13, 2008

Encoding:

0 1 0 1 0 0 1 0 direct address

ANL direct, #data
Operation: ANL

(direct) ← (direct) ^ #data

Bytes: 3

Encoding:

0 1 0 1 0 0 1 1

direct address

immediate data

ANL C, <src-bit>
Function: Logical AND for bit variables

Description: If the Boolean value of the source bit is a logic 0 then clear the carry flag; otherwise leave the carry flag in its
current state. A slash (“/”) preceding the operand in the assembly language indicates that the logical
complement of the addressed bit is used as the source value, but the source bit itself is not affected. No other
flags are affected. Only direct bit addressing is allowed for the source operand.

ANL C,bit
Operation: ANL

(C) ← (C) ^ (bit)

Bytes: 2

Encoding:

1 0 0 0 0 0 1 0 bit address

ANL C,/bit
Operation: ANL

(C) ← (C) ^ / (bit)

Bytes: 2

Encoding:

1 0 1 1 0 0 0 0 bit address

CJNE <dest-byte >, < src-byte >, rel
Function: Compare and jump if not equal

Description: CJNE compares the magnitudes of the first two operands, and branches if their values are not equal. The
branch destination is computed by adding the signed relative displacement in the last instruction byte to the
PC, after incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer
value of <dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared.
Neither operand is affected. The first two operands allow four addressing mode combinations: the
Accumulator may be compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

CJNE A,direct,rel
Operation: CJNE

(PC) ← (PC) + 3

if (A) < > (direct)

then (PC) ← (PC) + relative offset

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 37

if (A) < (direct)

then (C) ←1

else (C) ←0

Bytes: 3

Encoding:

1 0 1 1 0 1 0 1

direct address

relative address

CJNE A, #data,rel
Operation: CJNE

(PC) ← (PC) + 3

if (A) < > data

then (PC) ← (PC) + relative offset

if (A) < data

then (C) ←1

else (C) ← 0

Bytes: 3

Encoding:

1 0 1 1 0 1 0 0

immediate data

relative address

CJNE RN, #data, rel
Operation: CJNE

(PC) ← (PC) + 3

if (Rn) < > data

then (PC) ← (PC) + relative offset

if (Rn) < data

then (C) ← 1

else (C) ← 0

Bytes: 3

Encoding:

1 0 1 1 1 r r r

immediate data

relative address

CJNE @Ri, #data, rel
Operation: CJNE

(PC) ← (PC) + 3

if ((Ri)) < > data

then (PC) ← (PC) + relative offset

if ((Ri)) < data

then (C) ← 1

else (C) ← 0

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

38 CR0116 (v2.0) March 13, 2008

Bytes: 3

Encoding:

1 0 1 1 0 1 1 i

immediate data

relative address

CLR A
Function: Clear Accumulator

Description: The Accumulator is cleared (all bits set to zero). No flags are affected.

Operation: CLR

(A) ← 0

Bytes: 1

Encoding:

1 1 1 0 0 1 0 0

CLR bit
Function: Clear bit

Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on any directly
addressable bit.

Operation: CLR

(bit) ← 0

Bytes: 2

Encoding:

1 1 0 0 0 0 1 0 bit address

CLR C
Function: Clear carry flag

Description: The carry flag is cleared (reset to zero). No other flags are affected.

Operation: CLR

(C) ← 0

Bytes: 1

Encoding:

1 1 0 0 0 0 1 1

CPL A
Function: Complement Accumulator

Description: Each bit of the Accumulator is logically complemented (one’s complement). Bits which previously contained a
one are changed to zero and vice versa. No flags are affected.

Operation: CPL

(A) ← / (A)

Bytes: 1

Encoding:

1 1 1 1 0 1 0 0

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 39

CPL bit
Function: Complement bit

Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and vice versa. No
other flags are affected. CPL can operate on any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original data will be read from the output data
latch, not the input pin.

Operation: CPL

(bit) ← / (bit)

Bytes: 2

Encoding:

1 0 1 1 0 0 1 0 bit address

CPL C
Function: Complement carry flag

Description: The carry flag is complemented. If the flag had been a one it is changed to zero and vice versa. No other flags
are affected.

Operation: CPL

(C) ← / (C)

Bytes: 1

Encoding:

1 0 1 1 0 0 1 1

DA A
Function: Decimal adjust accumulator for addition

Description: DA A adjusts the eight-bit value in the accumulator resulting from the earlier addition of two variables (each in
packed BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to
perform the addition. If accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), of if the AC flag is
one, six is added to the accumulator producing the proper BCD digit in the low- order nibble. This internal
addition would set the carry flag if a carry-out of the low-order four-bit field propagated through all high-order
bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these high-
order bits are inceremented by six, producing the proper BCD digit in the high-order nibble. Again, this would
set the carry flag thus indicating that the sum of the original two BCD variables is greater than 100, allowing
multiple precision decimal additions. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the decimal conversion
by adding 00h, 06h, 60h or 66h to the accumulator, depending on initial accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the accumulator to BCD notation, nor does DA A
apply to decimal subtraction.

Operation: DA

Content of accumulator is BCD

if [[(A3-0) > 9] ^ [(AC) = 1]]

then (A3-0) ← (A3-0) + 6

and

if [[(A7-4) > 9] ^ [(C) = 1]]

then (A7-4) ← (A7-4) + 6

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

40 CR0116 (v2.0) March 13, 2008

Bytes: 1

Encoding:

1 1 0 1 0 1 0 0

DEC byte
Function: Decrement

Description: The variable indicated is decremented by 1. An original value of 00h will underflow to 0FFh. No flags are
affected. Four operand addressing modes are allowed: Accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

DEC A
Operation: DEC

(A) ← (A) - 1

Bytes: 1

Encoding:

0 0 0 1 0 1 0 0

DEC Rn
Operation: DEC

(Rn) ← (Rn) - 1

Bytes: 1

Encoding:

0 0 0 1 1 r r r

DEC direct
Operation: DEC

(direct) ← (direct) - 1

Bytes: 2

Encoding:

0 0 0 1 0 1 0 1 direct address

DEC @Ri
Operation: DEC

((Ri)) ← ((Ri)) - 1

Bytes: 1

Encoding:

0 0 0 1 0 1 1 i

DIV AB
Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B.
The Accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry
and OV flags will be cleared.

Exception: If B had originally contained 00 h, the values returned in the Accumulator and B register will be undefined and
the overflow flag will be set. The carry flag is cleared in any case.

Operation: DIV

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 41

(A) ← 15-8

 (A) / (B)

(B) ← 7-0

Bytes: 1

Encoding:

1 0 0 0 0 1 0 0

DJNZ <byte>, <rel-addr>
Function: Decrement and jump if not zero

Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if
the resulting value is not zero. An original value of 00h will underflow to 0FFh. No flags are affected. The
branch destination would be computed by adding the signed relative-displacement value in the last instruction
byte to the PC, after incrementing the PC to the first byte of the following instruction. The location
decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

DJNZ Rn,rel
Operation: DJNZ

(PC) ← (PC) + 2

(Rn) ← (Rn) - 1

if (Rn) > 0 or (Rn) < 0

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

1 1 0 1 1 r r r relative address

DJNZ direct,rel
Operation: DJNZ

(PC) ← (PC) + 2

(direct) ← (direct) - 1

if (direct) > 0 or (direct) < 0

then (PC) ← (PC) + rel

Bytes: 3

Encoding:

1 1 0 1 0 1 0 1

direct address

relative address

INC <byte>
Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFh will overflow to 00h. No flags are
affected. Four operand addressing modes are allowed: Accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

42 CR0116 (v2.0) March 13, 2008

INC A
Operation: INC

(A) ← (A) + 1

Bytes: 1

Encoding:

0 0 0 0 0 1 0 0

INC Rn
Operation: INC

(Rn) ← (Rn) + 1

Bytes: 1

Encoding:

0 0 0 0 1 r r r

INC direct
Operation: INC

(direct) ← (direct) + 1

Bytes: 2

Encoding:

0 0 0 0 0 1 0 1 direct address

INC @Ri
Operation: INC

((Ri)) ← ((Ri)) + 1

Bytes: 1

Encoding:

0 0 0 0 0 1 1 i

INC DPTR
Function: Increment data pointer
Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed; an overflow of the low-

order byte of the data pointer (DPL) from 0FFh to 00h will increment the high-order byte (DPH). No flags are
affected. This is the only 16-bit register which can be incremented.

Operation: INC

(DPTR) ← (DPTR) + 1

Bytes: 1

Encoding:

1 0 1 0 0 0 1 1

JB bit, rel
Function: Jump if bit is set

Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags
are affected.

Operation: JB

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 43

(PC) ← (PC) + 3

if (bit) = 1

then (PC) ← (PC) + rel

Bytes: 3

Encoding:

0 0 1 0 0 0 0 0

bit address

relative address

JBC bit,rel
Function: Jump if bit is set and clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with the next instruction. In
either case, clear the designated bit. The branch destination is computed by adding the signed relative
displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data will be read from the output data
latch, not the input pin.

Operation: JBC

(PC) ← (PC) + 3

if (bit) = 1

then (bit) ← 0

(PC) ← (PC) + rel

Bytes: 3

Encoding:

0 0 0 1 0 0 0 0

bit address

relative address

JC rel
Function: Jump if carry is set

Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next instruction. The branch
destination is computed by adding the signed relative- displacement in the second instruction byte to the PC,
after incrementing the PC twice. No flags are affected.

Operation: JC

(PC) ← (PC) + 2

if (C) = 1

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

0 1 0 0 0 0 0 0 relative address

JMP @A + DPTR
Function: Jump indirect relative to DPTR

Description: Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer (DPTR), and load the
resulting sum into the Program Counter. This will be the address for subsequent instruction fetches. Sixteen-
bit addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-
order bits. Neither the Accumulator nor the data pointer is altered. No flags are affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

44 CR0116 (v2.0) March 13, 2008

Operation: JMP

(PC) ← (A) + (DPTR)

Bytes: 1

Encoding:

0 1 1 1 0 0 1 1

JNB bit,rel
Function: Jump if bit is not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags
are affected.

Operation: JNB

(PC) ← (PC) + 3

if (bit) = 0

then (PC) ← (PC) + rel.

Bytes: 3

Encoding:

0 0 1 1 0 0 0 0

bit address

relative address

JNC rel
Function: Jump if carry flag is not set

Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the second instruction byte to
the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

Operation: JNC

(PC) ← (PC) + 2

if (C) = 0

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

0 1 0 1 0 0 0 0 relative address

JNZ rel
Function: Jump if Accumulator is not zero

Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.

Operation: JNZ

(PC) ← (PC) + 2

if (A) ≠ 0

then (PC) ← (PC) + rel.

Bytes: 2

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 45

0 1 1 1 0 0 0 0 relative address

JZ rel
Function: Jump if Accumulator is zero

Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.

Operation: JZ

(PC) ← (PC) + 2

if (A) = 0

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

0 1 1 0 0 0 0 0 relative address

LCALL addr16
Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the Program Counter
to generate the address of the next instruction and then pushes the 16-bit result onto the Stack (low byte first),
incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded,
respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the
instruction at this address. The subroutine may therefore begin anywhere in the full 64KB Program memory
address space. No flags are affected.

Operation: LCALL

(PC) ← (PC) + 3

(SP) ← (SP) + 1

((SP)) ← (PC7-0)

(SP) ← (SP) + 1

((SP)) ← (PC15-8)

(PC) ← addr15-0

Bytes: 3

Encoding:

0 0 0 1 0 0 1 0

addr15-8

addr7-0

LJMP addr16
Function: Long jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high- order and low-order bytes
of the PC (respectively) with the second and third instruction bytes. The destination may therefore be
anywhere in the full 64KB Program memory address space. No flags are affected.

Operation: LJMP

(PC) ← addr15... addr0

Bytes: 3

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

46 CR0116 (v2.0) March 13, 2008

Encoding:

0 0 0 0 0 0 1 0

addr15-8

addr7-0

MOV <dest-byte>, <src-byte>
Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the first operand.
The source byte is not affected. No other register or flag is affected. This is by far the most flexible operation.
Fifteen combinations of source and destination addressing modes are allowed.

MOV A,Rn
Operation: MOV

(A) ← (Rn)

Bytes: 1

Encoding:

1 1 1 0 1 r r r

MOV A,direct
Operation: MOV

(A) ← (direct)

Bytes: 2

Note: MOV A,ACC is not a valid instruction. The content of the Accumulator after the execution of this instruction is undefined.

Encoding:

1 1 1 0 0 1 0 1 direct address

MOV A,@Ri
Operation: MOV

(A) ← ((Ri))

Bytes: 1

Encoding:

1 1 1 0 0 1 1 i

MOV A, #data
Operation: MOV

(A) ← #data

Bytes: 2

Encoding:

0 1 1 1 0 1 0 0 immediate data

MOV Rn,A
Operation: MOV

(Rn) ← (A)

Bytes: 1

Encoding:

1 1 1 1 1 r r r

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 47

MOV Rn,direct
Operation: MOV

(Rn) ← (direct)

Bytes: 2

Encoding:

1 0 1 0 1 r r r direct address

MOV Rn, #data
Operation: MOV

(Rn) ← #data

Bytes: 2

Encoding:

0 1 1 1 1 r r r immediate data

MOV direct,A
Operation: MOV

(direct) ← (A)

Bytes: 2

Encoding:

1 1 1 1 0 1 0 1 direct address

MOV direct,Rn
Operation: MOV

(direct) ← (Rn)

Bytes: 2

Encoding:

1 0 0 0 1 r r r direct address

MOV direct,direct
Operation: MOV

(direct) ← (direct)

Bytes: 3

Encoding:

1 0 0 0 0 1 0 1

Direct address (source)

Direct address (destination)

MOV direct, @ Ri
Operation: MOV

(direct) ← ((Ri))

Bytes: 2

Encoding:

1 0 0 0 0 1 1 i direct address

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

48 CR0116 (v2.0) March 13, 2008

MOV direct, #data
Operation: MOV

(direct) ← #data

Bytes: 3

Encoding:

0 1 1 1 0 1 0 1

direct address

immediate data

MOV @ Ri,A
Operation: MOV

((Ri)) ← (A)

Bytes: 1

Encoding:

1 1 1 1 0 1 1 i

MOV @ Ri,direct
Operation: MOV

((Ri)) ← (direct)

Bytes: 2

Encoding:

1 0 1 0 0 1 1 i direct address

MOV @ Ri,#data
Operation: MOV

((Ri)) ← #data

Bytes: 2

Encoding:

0 1 1 1 0 1 1 i immediate data

MOV <dest-bit>, <src-bit>
Function: Move bit data

Description: The Boolean variable indicated by the second operand is copied into the location specified by the first
operand. One of the operands must be the carry flag; the other may be any directly addressable bit. No other
register or flag is affected.

MOV C,bit
Operation: MOV

(C) ← (bit)

Bytes: 2

Encoding:

1 0 1 0 0 0 1 0 bit address

MOV bit,C
Operation: MOV

(bit) ← (C)

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 49

Bytes: 2

Encoding:

1 0 0 1 0 0 1 0 bit address

MOV DPTR, #data16
Function: Load data pointer with a 16-bit constant

Description: The data pointer is loaded with the 16-bit constant indicated. The 16 bit constant is loaded into the second and
third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte (DPL) holds
the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

Operation: MOV

(DPTR) ← #data15..0

DPH DPL ← #data15...8 #data7..0

Bytes: 3

Encoding:

1 0 0 1 0 0 0 0

immediate data 15-8

immediate data 7-0

MOVC A, @A + <base-reg>
Function: Move code byte

Description: The MOVC instructions load the Accumulator with a code byte, or constant from Program memory. The
address of the byte fetched is the sum of the original unsigned eight-bit Accumulator contents and the
contents of a sixteen-bit base register, which may be either the data pointer or the PC. In the latter case, the
PC is incremented to the address of the following instruction before being added to the Accumulator;
otherwise the base register is not altered. Sixteen-bit addition is performed so a carry-out from the low-order
eight bits may propagate through higher-order bits. No flags are affected.

MOVC A, @A + DPTR
Operation: MOVC

(A) ← ((A) + (DPTR))

Bytes: 1

Encoding:

1 0 0 1 0 0 1 1

MOVC A, @A + PC
Operation: MOVC

(PC) ← (PC) + 1

(A) ← ((A) + (PC))

Bytes: 1

Encoding:

1 0 0 0 0 0 1 1

MOVX <dest-byte>, <src-byte>
Function: Move external

Description: The MOVX instructions transfer data between the Accumulator and a byte of external Data memory, hence
the X appended to MOV. There are two types of instructions, differing in whether they provide an 8-bit or 16-
bit indirect address to the external Data RAM.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

50 CR0116 (v2.0) March 13, 2008

In the first type, the contents of R0 or R1 in the current register bank provide an 8-bit address. In the second
type, the data pointer generates a 16-bit address.

MOVX A,@Ri
Operation: MOVX

(A) ← ((Ri))

Bytes: 1

Encoding:

1 1 1 0 0 0 1 i

MOVX A,@DPTR
Operation: MOVX

(A) ← ((DPTR))

Bytes: 1

Encoding:

1 1 1 0 0 0 0 0

MOVX @Ri,A
Operation: MOVX

((Ri)) ← (A)

Bytes: 1

Encoding:

1 1 1 1 0 0 1 i

MOVX @DPTR,A
Operation: MOVX

((DPTR)) ← (A)

Bytes: 1

Encoding:

1 1 1 1 0 0 0 0

MUL AB
Function: Multiply

Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The low-order byte of the
sixteen-bit product is left in the Accumulator, and the high-order byte in B. If the product is greater than 255
(0FFh) the overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Operation: MUL

(A) ←7-0

 (A) x (B)

(B) ←15-8

Bytes: 1

Encoding:

1 0 1 0 0 1 0 0

NOP
Function: No operation

Description: Execution continues at the following instruction. Other than the PC, no registers or flags are affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 51

Operation: NOP

 (PC) ← (PC) + 1

Bytes: 1

Encoding:

0 0 0 0 0 0 0 0

ORL <dest-byte>, <src-byte>
Function: Logical OR for byte variables

Description: ORL performs the bit wise logical OR operation between the indicated variables, storing the results in the
destination byte. No flags are affected (except P (Parity bit), if <dest-byte> = A).

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the
source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct
address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

ORL A,Rn
Operation: ORL

(A) ← (A) ∨ (Rn)

Bytes: 1

Encoding:

0 1 0 0 1 r r r

ORL A,direct
Operation: ORL

(A) ← (A) ∨ (direct)

Bytes: 2

Encoding:

0 1 0 0 0 1 0 1 direct address

ORL A,@Ri
Operation: ORL

(A) ← (A) ∨ ((Ri))

Bytes: 1

Encoding:

0 1 0 0 0 1 1 i

ORL A,#data
Operation: ORL

(A) ← (A) ∨ #data

Bytes: 2

Encoding:

0 1 0 0 0 1 0 0 immediate data

ORL direct,A
Operation: ORL

(direct) ← (direct) ∨ (A)

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

52 CR0116 (v2.0) March 13, 2008

Bytes: 2

Encoding:

0 1 0 0 0 0 1 0 direct address

ORL direct, #data
Operation: ORL

(direct) ← (direct) ∨ #data

Bytes: 3

Encoding:

0 1 0 0 0 0 1 1

direct address

Immediate data

ORL C, <src-bit>
Function: Logical OR direct bit with carry flag

Description: Set the carry flag if the Boolean value is a logic 1; leave the carry in its current state otherwise. A slash (“/”)
preceding the operand in the assembly language indicates that the logical complement of the addressed bit is
used as the source value, but the source bit itself is not affected. No other flags are affected.

ORL C,bit
Operation: ORL

(C) ← (C) ∨ (bit)

Bytes: 2

Encoding:

0 1 1 1 0 0 1 0 bit address

ORL C,/bit
Operation: ORL

(C) ← (C) ∨ / (bit)

Bytes: 2

Encoding:

1 0 1 0 0 0 0 0 bit address

POP direct
Function: Pop from stack

Description: The contents of the internal RAM location addressed by the Stack Pointer are read, and the Stack Pointer is
decremented by one. The value read is the transfer to the directly addressed byte indicated. No flags are
affected.

Operation: POP

(direct) ← ((SP))

(SP) ← (SP) - 1

Bytes: 2

Encoding:

1 1 0 1 0 0 0 0 direct address

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 53

PUSH direct
Function: Push onto stack

Description: The Stack Pointer is incremented by one. The contents of the indicated variable are then copied into the
internal RAM location addressed by the Stack Pointer. Otherwise no flags are affected.

Operation: PUSH

(SP) ← (SP) + 1

((SP)) ← (direct)

Bytes: 2

Encoding:

1 1 0 0 0 0 0 0 direct address

RET
Function: Return from subroutine

Description: RET pops the high and low-order bytes of the PC successively from the Stack, decrementing the Stack
Pointer by two. Program execution continues at the resulting address, generally the instruction immediately
following an ACALL or LCALL. No flags are affected.

Operation: RET

(PC15-8) ← ((SP))

(SP) ← (SP) - 1

(PC7-0) ← ((SP))

(SP) ← (SP) - 1

Bytes: 1

Encoding:

0 0 1 0 0 0 1 0

RETI
Function: Return from interrupt

Description: RETI pops the high and low-order bytes of the PC successively from the Stack, and restores the interrupt logic
to accept additional interrupts at the same priority level as the one just processed. The Stack Pointer is left
decremented by two. No other registers are affected

The PSW is not automatically restored to its pre-interrupt status. Program execution continues at the resulting address, which is
generally the instruction immediately after the point at which the interrupt request was detected. If a lower or
same-level interrupt is pending when the RETI instruction is executed, that one instruction will be executed
before the pending interrupt is processed.

Operation: RETI

(PC15-8) ← ((SP))

(SP) ← (SP) - 1

(PC7-0) ← ((SP))

(SP) ← (SP) - 1

Bytes: 1

Encoding:

0 0 1 1 0 0 1 0

RL A
Function: Rotate Accumulator left

Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags
are affected.

Operation: RL

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

54 CR0116 (v2.0) March 13, 2008

(An + 1) ← (An) n = 0-6

(A0) ← (A7)

Bytes: 1

Encoding:

0 0 1 0 0 0 1 1

RLC A
Function: Rotate Accumulator left through carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the
carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.

Operation: RLC

(An + 1) ← (An) n = 0-6

(A0) ← (C)

(C) ← (A7)

Bytes: 1

Encoding:

0 0 1 1 0 0 1 1

RR A
Function: Rotate Accumulator right

Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No flags
are affected.

Operation: RR

(An) ← (An + 1) n = 0-6

(A7) ← (A0)

Bytes: 1

Encoding:

0 0 0 0 0 0 1 1

RRC A
Function: Rotate Accumulator right through carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into
the carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.

Operation: RRC

(An) ← (An + 1) n=0-6

(A7) ← (C)

(C) ← (A0)

Bytes: 1

Encoding:

0 0 0 1 0 0 1 1

SETB <bit>
Function: Set bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No
other flags are affected.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 55

SETB bit
Operation: SETB

(bit) ← 1

Bytes: 2

Encoding:

1 1 0 1 0 0 1 0 bit address

SETB C
Operation: SETB

(C) ← 1

Bytes: 1

Encoding:

1 1 0 1 0 0 1 1

SJMP rel
Function: Short jump

Description: Program control branches unconditionally to the address indicated. The branch destination is computed by
adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice.
Therefore, the range of destinations allowed is from 128 bytes preceding this instruction to 127 bytes following
it.

Note: Under the above conditions the instruction following SJMP will be at 102h. Therefore, the displacement byte of the
instruction will be the relative offset (0123h - 0102h) = 21h . In other words, an SJMP with a displacement of 0FEh would be a
one-instruction infinite loop.

Operation: SJMP

(PC) ← (PC) + 2

(PC) ← (PC) + rel

Bytes: 2

Encoding:

1 0 0 0 0 0 0 0 relative address

SUBB A, <src-byte>
Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in
the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If
C was set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step
in a multiple precision subtraction, so the carry is subtracted from the Accumulator along with the source
operand).

AC (Auxiliary Carry bit) is set if a borrow is needed for bit 3 and cleared otherwise. OV (Overflow flag) is set if a borrow is
needed into bit 6 but not into bit 7, or into bit 7 but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative
number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

SUBB A,Rn
Operation: SUBB

(A) ← (A) - (C) - (Rn)

Bytes: 1

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

56 CR0116 (v2.0) March 13, 2008

Encoding:

1 0 0 1 1 r r r

SUBB A,direct
Operation: SUBB

(A) ← (A) - (C) - (direct)

Bytes: 2

Encoding:

1 0 0 1 0 1 0 1 direct address

SUBB A, @ Ri
Operation: SUBB

(A) ← (A) - (C) - ((Ri))

Bytes: 1

Encoding:

1 0 0 1 0 1 1 i

SUBB A, #data
Operation: SUBB

(A) ← (A) - (C) - #data

Bytes: 2

Encoding:

1 0 0 1 0 1 0 0 immediate data

SWAP A
Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low and high-order nibbles (four-bit fields) of the Accumulator (bits 3-0 and bits 7-
4). The operation can also be thought of as a four-bit rotate instruction. No flags are affected.

Operation: SWAP

(A3-0) ↔ (A7-4)

Bytes: 1

Encoding:

1 1 0 0 0 1 0 0

XCH A, <byte>
Function: Exchange Accumulator with byte variable

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original
Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or
register-indirect addressing.

XCH A,Rn
Operation: XCH

(A) ↔ (Rn)

Bytes: 1

Encoding:

1 1 0 0 1 r r r

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 57

XCH A,direct
Operation: XCH

(A) ↔ (direct)

Bytes: 2

Encoding:

1 1 0 0 0 1 0 1 direct address

XCH A, @ Ri
Operation: XCH

(A) ↔ ((Ri))

Bytes: 1

Encoding:

1 1 0 0 0 1 1 i

XCHD A,@Ri
Function: Exchange digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0, generally representing a hexadecimal or
BCD digit), with that of the internal RAM location indirectly addressed by the specified register. The high-order
nibbles (bits 7-4) of each register are not affected. No flags are affected.

Operation: XCHD

(A3-0) ↔ ((Ri3-0))

Bytes: 1

Encoding:

1 1 0 1 0 1 1 i

XRL <dest-byte>, <src-byte>
Function: Logical Exclusive OR for byte variables

Description: XRL performs the bit wise logical Exclusive OR operation between the indicated variables, storing the results
in the destination. No flags are affected (except P (Parity bit), if <dest-byte> = A).

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the
source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct
address, the source can be Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

XRL A,Rn
Operation: XRL

(A) ← (A) ∀ (Rn)

Bytes: 1

Encoding:

0 1 1 0 1 r r r

XRL A,direct
Operation: XRL

(A) ← (A) ∀ (direct)

Bytes: 2

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

58 CR0116 (v2.0) March 13, 2008

0 1 1 0 0 1 0 1 direct address

XRL A, @ Ri
Operation: XRL

(A) ← (A) ∀ ((Ri))

Bytes: 1

Encoding:

0 1 1 0 0 1 1 i

XRL A, #data
Operation: XRL

(A) ← (A) ∀ #data

Bytes: 2

Encoding:

0 1 1 0 0 1 0 0 immediate data

XRL direct,A
Operation: XRL

(direct) ← (direct) ∀ (A)

Bytes: 2

Encoding:

0 1 1 0 0 0 1 0 direct address

XRL direct, #data
Operation: XRL

(direct) ← (direct) ∀ #data

Bytes: 3

Encoding:

0 1 1 0 0 0 1 1

direct address

immediate data

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 59

Memory Timing

Program Memory Timing
The execution of instruction N is performed during the fetch of instruction N+1.

Program Memory Read Cycle

Figure 14. Program memory Read cycle without wait states

Note: CLK - system clock signal (CLK)

 CLK90 - system clock signal (CLK90)

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 Read sample - point at which data is read from bus into the internal register.

Figure 15. Program memory Read cycle with 1 wait state

Note: CLK - system clock signal (CLK)

 CLK90 - system clock signal (CLK90)

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 read sample - point at which data is read from bus into the internal register.

External Data Memory Timing

External Data Memory Read Cycle

Figure 16. External Data memory Read cycle with stretch 0

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

60 CR0116 (v2.0) March 13, 2008

Note: CLK - system clock signal (CLK)

 CLK90 - system clock signal (CLK90)

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 ADDR - address of memory cell

 DATA - data to be read from address ADDR

 Read sample - point at which data is read from bus into the internal register.

Figure 17. External Data memory Read cycle with stretch 1

Note: CLK - system clock signal (CLK)

 CLK90 - system clock signal (CLK90)

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 ADDR - address of memory cell

 DATA - data to be read from address ADDR

 Read sample - point at which data is read from bus into the internal register.

External Data Memory Write Cycle

Figure 18. External Data memory Write cycle with stretch 0

Note: CLK - system clock signal (CLK)

 CLK90 - system clock signal (CLK90)

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 ADDR - address of data memory cell

 DATA - data to be written into address ADDR

 Write sample - point at which data is written from the bus into memory.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

CR0116 (v2.0) March 13, 2008 61

Figure 19. External Data memory Write cycle with stretch 1

Note: CLK - system clock signal (CLK)

 CLK90 - system clock signal (CLK90)

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 ADDR - address of data memory cell

 DATA - data to be written into address ADDR

 Write sample - point at which data is written from the bus into memory.

Figure 20. External Data memory Write cycle with stretch 2

Note: CLK - system clock signal (CLK)

 CLK90 - system clock signal (CLK90)

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 ADDR - address of data memory cell

 DATA - data to be written into address ADDR

 Write sample - point at which data is written from the bus into memory.

Legacy documentation
refer to the Altium Wiki for current information

TSK52x MCU

62 CR0116 (v2.0) March 13, 2008

Revision History

Date Version No. Revision

31-Dec-2003 1.0 New product release

01-Oct-2004 1.1 Modifications to Program memory, external Data memory, Interrupts, Priority structure, On-Chip
debugging. Addition of XP register and DA A instruction. Removal of DPS, DPL1 and DPH1
registers. Addition of Wishbone versions – TSK52B_W and TSK52B_WD.

03-Nov-2004 1.2 Change to use of bit 0 for the WBT0 register. Also swapped the High/Low descriptions for bit 1
of this register.

08-Feb-2005 1.3 Addition of Wishbone Peripheral memory mapping information, showing alignment with SFR
space for the TSK52B_W and TSK52B_WD. Modifications to debug panel information in On-
Chip Debugging section.

09-May-2005 1.4 Updated for SP4

12-Dec-2005 1.5 Path references updated for Altium Designer 6

13-Mar-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:

Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

	Features
	Performance
	Available Devices
	 Architectural Overview
	Symbols
	Pin Description
	Memory Organization
	Program Memory
	Data Memory
	External Data Memory
	Internal Data Memory

	Special Function Registers
	Special Function Registers Location
	Special Function Registers Reset Values
	Accumulator (ACC)
	B Register
	External Data memory Paging Register (XP)
	Program Status Word Register (PSW)
	Stack Pointer (SP)
	Data Pointer Register (DPL and DPH)
	Program Counter (PC)
	Additional Wishbone Interface Special Function Registers
	Wishbone Timing Register 0 (WBT0)
	Wishbone Timing Register 1 (WBT1)

	Hardware Description
	Block Diagram
	 TSK52x Engine
	Ports

	Reset Control
	Interrupt Service Routine Unit
	Interrupt Overview
	Interrupt-Based Special Function Registers
	Interrupt Enable Register 0 (IEN0)
	Interrupt Enable Register 1 (IEN1)
	Interrupt Request Register (IRCON)

	Priority Level Structure
	Interrupt Priority Register 0 (IP0)
	Interrupt Priority Register 1 (IP1)

	Interrupt Sources and Vectors
	External Interrupt Edge Detect
	Wishbone Interface (TSK52B_W and TSK52B_WD)
	Writing to a Wishbone Slave Device
	Reading from a Wishbone Slave Device
	Communicating with Multiple Wishbone Slave Devices

	On-Chip Debugging
	Adding Debug Functionality to a Standard Core Variant
	Accessing the Debug Environment

	 Instruction Set
	Instruction Set – Functional Groupings
	Hexadecimal Ordered Instructions

	Instruction Set – Detailed Reference
	ACALL addr11
	ADD A, <src-byte>
	ADD A, Rn
	ADD A, direct
	ADD A, @Ri
	ADD A, #data

	ADDC A, < src-byte>
	ADDC A, Rn
	ADDC A, direct
	ADDC A, @Ri
	ADDC A, #data

	AJMP addr11
	ANL <dest-byte>, <src-byte>
	ANL A,Rn
	ANL A,direct
	ANL A, @Ri
	ANL A, #data
	ANL direct,A
	ANL direct, #data

	ANL C, <src-bit>
	ANL C,bit
	ANL C,/bit

	CJNE <dest-byte >, < src-byte >, rel
	CJNE A,direct,rel
	CJNE A, #data,rel
	CJNE RN, #data, rel
	CJNE @Ri, #data, rel

	CLR A
	CLR bit
	CLR C

	CPL A
	 CPL bit
	CPL C

	DA A
	DEC byte
	DEC A
	DEC Rn
	DEC direct
	DEC @Ri

	DIV AB
	DJNZ <byte>, <rel-addr>
	DJNZ Rn,rel
	DJNZ direct,rel

	INC <byte>
	 INC A
	INC Rn
	INC direct
	INC @Ri

	INC DPTR
	JB bit, rel
	JBC bit,rel
	JC rel
	JMP @A + DPTR
	JNB bit,rel
	JNC rel
	JNZ rel
	JZ rel
	LCALL addr16
	LJMP addr16
	MOV <dest-byte>, <src-byte>
	MOV A,Rn
	MOV A,direct
	MOV A,@Ri
	MOV A, #data
	MOV Rn,A
	MOV Rn,direct
	MOV Rn, #data
	MOV direct,A
	MOV direct,Rn
	MOV direct,direct
	MOV direct, @ Ri
	MOV direct, #data
	MOV @ Ri,A
	MOV @ Ri,direct
	MOV @ Ri,#data
	MOV <dest-bit>, <src-bit>
	MOV C,bit
	MOV bit,C

	MOV DPTR, #data16
	MOVC A, @A + <base-reg>
	MOVC A, @A + DPTR
	MOVC A, @A + PC

	MOVX <dest-byte>, <src-byte>
	MOVX A,@Ri
	MOVX A,@DPTR
	MOVX @Ri,A
	MOVX @DPTR,A

	MUL AB
	NOP
	ORL <dest-byte>, <src-byte>
	ORL A,Rn
	ORL A,direct
	ORL A,@Ri
	ORL A,#data
	ORL direct,A
	ORL direct, #data

	ORL C, <src-bit>
	ORL C,bit
	ORL C,/bit

	POP direct
	PUSH direct
	RET
	RETI
	RL A
	RLC A
	RR A
	RRC A
	SETB <bit>
	SETB bit

	SETB C
	SJMP rel
	SUBB A, <src-byte>
	SUBB A,Rn
	SUBB A,direct
	SUBB A, @ Ri
	SUBB A, #data

	SWAP A
	XCH A, <byte>
	XCH A,Rn
	XCH A,direct
	XCH A, @ Ri

	XCHD A,@Ri
	XRL <dest-byte>, <src-byte>
	XRL A,Rn
	XRL A,direct
	XRL A, @ Ri
	XRL A, #data
	XRL direct,A
	XRL direct, #data

	 Memory Timing
	Program Memory Timing
	Program Memory Read Cycle

	External Data Memory Timing
	External Data Memory Read Cycle
	External Data Memory Write Cycle

	 Revision History

