
Legacy documentation
refer to the Altium Wiki for current information

CR0115 (v2.0) March 13, 2008 1

TSK51x MCU

Summary
Core Reference
CR0115 (v2.0) March 13, 2008

The TSK51x is a fully functional, 8-bit microcontroller, incorporating the Harvard
architecture. This core reference includes architectural and hardware descriptions,
instruction sets and on-chip debugging functionality for the TSK51x family.

The TSK51x is the core of a fast, single-chip, 8-bit microcontroller, which executes all ASM51 instructions and is instruction set
compatible with the 80C31. The TSK51x serves software and hardware interrupts, provides an interface for serial
communications and incorporates a timer system.
Important Notice: Supply of this soft core under the terms and conditions of the Altium End-User License Agreement does not
convey nor imply any patent rights to the supplied technologies. Users are cautioned that a license may be required for any use
covered by such patent rights

Features
• Control Unit

− 8-bit Instruction decoder.

• Arithmetic Logic Unit

− 8 bit arithmetic operations

− 8 bit logical operations

− Boolean manipulations

− 8 x 8 bit multiplication

− 8 / 8 bit division.

• 32-bit Input/Output ports

− Four 8-bit I/O ports

• Two 16-bit Timer/Counters

• Serial Peripheral Interfaces in full duplex mode

− Synchronous mode, fixed baud rate

− 8-bit UART mode, variable baud rate

− 9-bit UART mode, fixed baud rate

− 9-bit UART mode, variable baud rate

− Multiprocessor communication.

• Interrupt Controller

− Two Priority Levels

− Five interrupt sources.

• Internal memory interface

− Can address up to 64KB of Internal Program memory space.

− Can address up to 256 bytes of Read/Write Data memory Space.

• External memory interface

− Can address up to 64KB of External Program memory Space

− Can address up to 64KB of External Data memory Space.

• Special Function Registers interface

− Services up to 107 External Special Function Registers

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

2 CR0115 (v2.0) March 13, 2008

Available Devices
Both standard and debug-enabled (OCD) versions of the microcontroller are available – the TSK51A and TSK51A_D
respectively. These devices can be found in the FPGA Processors integrated library (FPGA Processors.IntLib), located in
the \Library\Fpga folder of the installation.

Architectural Overview

Symbols

Figure 1. TSK51x family symbols

Pin Description
The pinout of the TSK51x has not been fixed to any specific device I/O - allowing flexibility with user application. The TSK51x
contains only unidirectional pins - inputs or outputs.

Table 1. TSK51x Pin description

Name Type Polarity/Bus size Description

Control Signals

CLK I Rise External system clock (used for internal clock counters and all other
synchronous circuitry)

RST I High External system reset. A high on this pin for two clock cycles while the
external system clock (CLK) is running resets the device.

EA I High External Access Enable. EA must be externally held High to enable the
device to fetch code from external Program memory (0000h - FFFFh). If
EA is held Low, the device executes from internal Program memory
unless the Program Counter contains an address greater than 0FFFh.

External Special Function Registers Interface Signals

SFRDATAO O 8 SFR data bus output

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 3

Name Type Polarity/Bus size Description

SFRDATAI I 8 SFR data bus input

SFRADDR O 7 SFR address bus

SFRWR O High SFR write enable

SFRRD O High SFR output enable

Internal Program Memory Interface Signals

ROMDATAI I 8 Memory data bus input

ROMDATAO1 O 8 Memory data bus output

ROMADDR O 16 Memory address bus

ROMWR1 O High Memory write enable

ROMRD O High Memory output enable

Interrupt Signals

INT0 I Rise/High External interrupt 0. Interrupt type (rising edge or High level) is
determined by setting or clearing bit 0 (IT0) in the TCON register,
respectively

INT1 I Rise/High External interrupt 1. Interrupt type (rising edge or High level) is
determined by setting or clearing bit 2 (IT1) in the TCON register,
respectively

Timer Signals

T0 I Fall Timer 0 external clock input

T1 I Fall Timer 1 external clock input

Serial Interface Signals

RXD I - Serial port 0 input (receive)

TXD O - Serial port 0 output (transmit)

RXDO O - Serial port 0 output (transmit in Mode 0)

I/O Port Interface Signals

P0O

P0I

O

I

8

8

Port 0 is an 8-bit bi-directional I/O port with separated inputs and
outputs.

P1O

P1I

O

I

8

8

Port 1 is an 8-bit bi-directional I/O port with separated inputs and
outputs.

P2O

P2I

O

I

8

8

Port 2 is an 8-bit bi-directional I/O port with separated inputs and
outputs.

P3O

P3I

O

I

8

8

Port 3 is an 8-bit bi-directional I/O port with separated inputs and
outputs.

External Memory Interface Signals

MEMDATAO O 8 External memory output

MEMDATAI I 8 External memory input

1 TSK51A_D only

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

4 CR0115 (v2.0) March 13, 2008

Name Type Polarity/Bus size Description

MEMADDR O 16 External address bus

MEMWR O High External Data memory write enable

MEMRD O High External Data memory output enable

PSWR2 O High External Program memory write enable

PSRD O High External Program memory output enable

Memory Organization
Memory in the TSK51x is organized into three distinct areas:

• Program memory (internal ROM or external ROM)

• External Data memory (external RAM)

• Internal Data memory (internal RAM).

Program Memory
The TSK51x can address up to 64KB of Program memory, implemented as either internal ROM, external ROM, or a
combination of both.

After a reset has been issued, the CPU starts program execution from location 0000h.

Figure 2. Program memory map

Up to 64KB of internal Program memory space can be addressed. The actual size of the memory space is determined by the
value stored in the ROMSIZE register (see 0) and is calculated as:

Internal Program memory = ROMSIZE x 256

The size of internal Program memory is therefore under direct control of software. By default, after a reset, the ROMSIZE
register contains the value 10h, which yields a memory space of 4KB. To increase or decrease this size, simply load the
ROMSIZE register with the appropriate value.

2 TSK51A_D only

External ROM

0000h

FFFFh

0000h

Internal ROM

Upper Limit of
memory space
determined by

ROMSIZE x 256

8000h

4000h

C000h

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 5

Program code can be fetched from external or internal Program memory. This selection is made by strapping pin EA (External
Address) to VCC or GND respectively. Note that EA can be changed at anytime whilst the processor is running, giving full
control over the particular memory space used.

If EA is held High, all the program code is fetched from external memory. If EA is held Low, the lowest n bytes of program code
is fetched from internal ROM, where n is the result of ROMSIZE x 256.

When the extent of internal memory space is reached, program code will then automatically be fetched from external memory
space. The Program Counter is not reset however, so code will be fetched from the next memory address, but within external
memory space.

If the ROMSIZE register contains 00h, the fetch will automatically default to the external Program memory, even if EA is Low.

The lower part of the Program memory includes interrupt and reset vectors. The interrupt vectors are spaced at 8-byte intervals,
starting from 0003h for External Interrupt 0.

Table 2. Reset vectors

Location Service

0003h External Interrupt 0

000Bh Timer 0 overflow

0013h External Interrupt 1

001Bh Timer 1 overflow

0023h Serial Port Interrupt

These locations may be used for program code, if the corresponding interrupts are not used (disabled).

When using Internal Program memory, a separate block is placed in the design – external to the component symbol for the
core. With the standard version of the core (TSK51A), a block of ROM is used, the size of which depends on the requirements
of the design. With the OCD version (TSK51A_D), because this version of the core allows you to write to Program memory
space, RAM must be used instead, as shown in Figure 3.

Figure 3. Using RAM for TSK51A_D internal Program memory

RAM and ROM blocks can be found in the FPGA Memories integrated library (\Library\Fpga\FPGA Memories.IntLib).

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

6 CR0115 (v2.0) March 13, 2008

Data Memory

External Data Memory
The TSK51x Microcontroller core incorporates the Harvard architecture, with separate program (code) and data spaces:

• The code from external Program memory is fetched by strobing the PSRD pin.

• Data is read from external Data memory by strobing the MEMRD pin and written to external Data memory by strobing the
MEMWR pin.

• The external Data memory space can be accessed directly, through the 16 bit Data Pointer Register (DPTR), or indirectly,
using register R0 or R1 and the external Data memory paging register, XP.

• Data is read back on the MEMDATAI bus.

Internal Data Memory
The TSK51x has a 256 byte block of RAM dedicated for use as internal Data memory. This RAM cannot be upgraded in size.
The internal Data memory interface is therefore not exposed to the user through the schematic symbol.

The 256 bytes of memory space (00h to FFh) can be accessed by either direct or indirect addressing (where supported). An
internal Data memory address is always 1 byte in width.

The upper 128 bytes contain the Special Function Registers (SFRs). This area of internal Data memory is accessible only by
direct addressing.

The lower 128 bytes contain work registers and bit-addressable memory. The lower 48 bytes of this area of memory space are
further divided as follows:

• The lower 32 bytes (00h – 1Fh) form four banks of eight registers (R0-R7). The RS0 and RS1 bits in the Program Status
Word register (PSW) select which bank is currently in use.

• The next 16 bytes (20h – 2Fh) form a block of bit-addressable memory space, covering the bit address range 00h-7Fh.

All of the bytes in this lower half of the internal Data memory space are accessible through direct or indirect addressing.

External RAM
00h

FFFFh

0000h

Internal RAM

7Fh

8000h

4000h

C000h

80h

FFh

SFR Space

1Fh

2Fh

20h Bit-Addressable Space

Register Banks
(4x (R0-R7))

Figure 4. Data memory map

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 7

Special Function Registers
A map of the Special Function Registers is shown in Table 3. Only a few addresses are occupied, the others are not
implemented. Read access to unimplemented addresses will return undefined data, while writing to them will have no effect.

Table 3. Special Function Registers location

Hex\Bin X000 X001 X010 X011 X100 X101 X110 X111 Bin/Hex

F8 FF

F0 B F7

E8 EF

E0 ACC E7

D8 DF

D0 PSW D7

C8 CF

C0 C7

B8 IP BF

B0 P3 B7

A8 IE AF

A0 P2 A7

98 SCON SBUF XP 9F

90 P1 97

88 TCON TMOD TL0 TL1 TH0 TH1 ROMSIZE 8F

80 P0 SP DPL DPH PCON 87

Accumulator (ACC)
Most instructions use the Accumulator to hold the operand. Note that the mnemonics for Accumulator-specific instructions refer
to the Accumulator as A, not ACC.

B register
The B register is used during multiply and divide instructions. It can also be used as a scratch-pad register to hold temporary
data.

External Data memory Paging Register (XP)
The content of the XP register is loaded onto the high order byte of the external memory address bus (MEMADDR) during a
MOVX @Ri instruction. The XP register is used to implement paging and can provide access to up to 256 pages in external
Data memory. Each page can contain up to 256 bytes of data – dependent on the contents of the register Ri. Therefore the
maximum addressable Data memory space is 64KB.

Program Status Word Register (PSW)
Table 4. PSW register flags

MSB LSB

CY AC F1 RS1 RS0 OV F0 P

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

8 CR0115 (v2.0) March 13, 2008

Table 5. PSW register bit functions

Bit Symbol Function

PSW.7 CY Carry flag

PSW.6 AC Auxiliary Carry flag for BCD operations

PSW.5 F1 General purpose Flag 1 available for user

PSW.4 RS1 Register bank select control bit 1, used to select working register bank

PSW.3 RS0 Register bank select control bit 0, used to select working register bank

PSW.2 OV Overflow flag

PSW.1 F0 General purpose Flag 0 available for user

PSW.0 P Parity flag, affected by hardware to indicate odd / even number of “one”
bits in the Accumulator, i.e. even parity.

Bits RS1and RS0 are used to select the working register bank as follows:

Table 6. Register Bank selection

RS1:RS0 Bank selected Location

00 Bank 0 (00h – 07h)

01 Bank 1 (08h – 0Fh)

10 Bank 2 (10h – 17h)

11 Bank 3 (18h – 1Fh)

Stack Pointer Register (SP)
The Stack Pointer is a 1-byte register initialized to 07h after reset. This register is incremented before PUSH and CALL
instructions, causing the stack to begin at location 08h.

Data Pointer Register (DPL and DPH)
The Data Pointer (DPTR) is 2 bytes wide. The lower byte is DPL and the higher DPH. It can be loaded as either a single 2 byte
register:

MOV DPTR,#data16)

or as two individual, single byte registers:

MOV DPL,#data8

MOV DPH,#data8

It is generally used to access external code or data space, for example:

MOVC A,@A+DPTR or

MOVX A,@DPTR.

Internal Program Memory Sizing Register (ROMSIZE)
The content of this register is used to determine the size of internal Program memory space. The addressable space is defined
as:

ROMSIZE x 256

The register, which can have minimum and maximum values of 00h and FFh respectively, can therefore be used to define an
internal ROM space, that is multiples of 256 bytes, in the range 0 – 64KB.

By default, the reset value of the ROMSIZE register is 10h, which gives an internal Program memory space of 4KB.

The register is loaded under software control.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 9

Power Control Register (PCON)
Table 7. PCON register flags

MSB LSB

SMOD F6 F5 F4 F3 F2 0 0

Table 8. PCON register bit functions

Bit Symbol Function

PCON.7 SMOD Double baud rate bit. If Timer 1 is used to generate the baud rate and
SMOD is set (1), the baud rate is doubled when the Serial Port is used in
modes 1,2 or 3

PCON.6 F6 General purpose Flag 6 available for user

PCON.5 F5 General purpose Flag 5 available for user

PCON.4 F4 General purpose Flag 4 available for user

PCON.3 F3 General purpose Flag 3 available for user

PCON.2 F2 General purpose Flag 2 available for user

PCON.1 0 This bit is read only and is permanently cleared (0)

PCON.0 0 This bit is read only and is permanently cleared (0)

Hardware Description
The TSK51x core is partitioned into modules as shown in figure 12 and described below.

Core Engine
The core engine of the TSK51x is composed of four components:

• Control Unit

• Arithmetic Logic Unit

• Memory Control Unit

• RAM and SFR Control Unit.

The TSK51x engine allows instructions to be fetched from Program memory and to execute using either RAM or SFR.

Arithmetic Logic Unit:

• 8 bit arithmetic operations

• 8 bit logical operations

• Boolean manipulations

• 8 x 8 bit multiplication

• 8 / 8 bit division

RAM and SFR Control Unit:

• Can address up to 256 bytes of Read/Write Data memory space

• Serves as Interface for off-core Special Function Registers

Memory Control Unit:

• Can address up to 64KB of internal Program memory space

• Can address up to 64KB of external Program memory space

• Can address up to 64KB of external Data memory space.

Block Diagram
Figure 5 shows the core engine and peripheral units for the TSK51x. Note that interface signals PSWR, ROMDATAO and
ROMWR in the Memory Control Unit are present only in the debug-enabled version of the core – TSK51A_D.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

10 CR0115 (v2.0) March 13, 2008

cyclefetch instr phase

PORTS

P0

P0I

P1

P2

P3

P1I
P2I
P3I
P0O
P1O
P2O
P3O

SERIAL

SCON SBUF

ISR

IP
IE

tf1, ie1tf0, ie0

CONTROL_UNIT

ALU

cycleinstr

RAM_SFR_CONTROL ramdatai
ramdatao
ramaddr
ramoe
ramwe

SFRDATAI
SFRDATAO
SFRADDR

SFROE
SFRWE

SP

TIMER

TL0
TL1

TH0
TH1

TCON
TMOD

MEMORY_CONTROL
PSRD
PSWR

EA

ROMOE
ROMADDR

ROMDATAO

ACC B PSW

DPTR
PC

INSTRREG
riti

cyclefetch instr phase

ACC

RAM
256 bytes

CLOCK_CONTROL

PCON

RST
CLK

RXD
TXD
RXDO

T0
T1
INT0
INT1

MEMDATAO
MEMDATAI

MEMWR
MEMADDR

MEMRD

ROMDATAI

ROMWR

CLK

Figure 5. TSK51x Block diagram

Ports
Ports P0, P1, P2 and P3 are Special Function Registers. The contents of the SFR can be observed on the corresponding
component symbol interface pins. Writing a ‘1’ to any of the ports causes the corresponding pin to be at the high level and
writing a ‘0’ causes the corresponding pin to be held at the low level.

All four ports on the chip are bi-directional. Each of them consists of a Latch (SFR P0 to P3), an output drive and an input buffer,
so the CPU can output or read data through any of these ports.

Timers / Counters

Timers 0 and 1
The TSK51x has two 16-bit timer/counter registers: Timer 0 and Timer 1. Both can be configured for counter or timer operations.

In timer mode, the register is incremented every machine (instruction) cycle, which means that it counts up after every 12 clock
cycles.

In counter mode, the register is incremented when the falling edge is observed at the corresponding input pin T0 or T1. Since it
takes two machine cycles to recognize a 1-to-0 event, the maximum input count rate is 1/24 of the external clock (CLK)
frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be
stable for at least one machine cycle (12 clock cycles).

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 11

Four operating modes can be selected for Timer 0 and Timer 1. Two Special Function Registers (TMOD and TCON) are used to
select the appropriate mode.

Timer / Counter Mode Control Register(TMOD)
Table 9. The TMOD register flags

MSB LSB

GATE C/T M1 M0 GATE C/T M1 M0

 Timer 1 Timer 0

Table 10. The TMOD register bits description

Bit Symbol Function

TMOD.3

TMOD.7

GATE When GATE = 0, Timer/Counter x will run only when TRx bit is set (see
TCON register). This allows for Software Control.

When GATE = 1, Timer/Counter x will run only when TRx bit is set (in
TCON register) AND INTx pin is Low. This allows for Hardware
Control.

TMOD.2

TMOD.6

C/T When C/T = 0, Timer/Counter x will run as a timer, triggered by the
internal clock.

When C/T = 1, Timer/Counter x will run as a counter, triggered by the
falling edge of the external signals entering pin T0 (for Timer/Counter
0) and T1 (for Timer/Counter 1).

TMOD.1

TMOD.5

M1 Selects mode for Timer/Counter 0 or Timer/Counter 1, as shown in
Table 13.

TMOD.0

TMOD.4

M0 Selects mode for Timer/Counter 0 or Timer/Counter 1, as shown in
Table 13.

Timer / Counter Control Register(TCON)
Table 11. The TCON register flags

MSB LSB

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Table 12. The TCON register bit functions

Bit Symbol Function

TCON.7 TF1 Timer/Counter 1 overflow flag set by hardware when Timer/Counter 1
overflows. This flag is cleared by hardware.

TCON.6 TR1 Timer/Counter 1 Run control bit. If cleared, Timer/Counter 1 stops.

TCON.5 TF0 Timer/Counter 0 overflow flag set by hardware when Timer/Counter 0
overflows. This flag is cleared by hardware

TCON.4 TR0 Timer/Counter 0 Run control bit. If cleared, Timer/Counter 0 stops.

TCON.3 IE1 Interrupt 1 flag. Set by hardware when an interrupt of the type
specified by IT1 is observed on external pin INT1. This flag is cleared
when the interrupt is processed.

TCON.2 IT1 Interrupt 1 type control bit. Set/cleared by software to specify rising
edge/high level triggered External Interrupt.

TCON.1 IE0 Interrupt 0 flag. Set by hardware when an interrupt of the type

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

12 CR0115 (v2.0) March 13, 2008

specified by IT0 is observed on external pin INT0. This flag is cleared
when the interrupt is processed.

TCON.0 IT0 Interrupt 0 type control bit. Set/cleared by software to specify rising
edge/high level triggered External Interrupt.

Timing Modes
Four modes of operation are supported for the two timers, determined by the state of bits M1 and M0 in the TMOD register
(TMOD.1 and TMOD.0 respectively for Timer/Counter 0; TMOD.5 and TMOD.4 respectively for Timer/Counter 1). Table 13
summarizes the required states of these bits to achieve the desired operational mode.

Table 13. Timer/Counter Modes

M1 M0 Mode

0 0 Mode 0

0 1 Mode 1

1 0 Mode 2

1 1 Mode 3

Mode 0
When in Mode 0, the Timer/Counter is set to 13 bits, where the 3 MSB bits of the TLx register are not used. Assuming the
Timer/Counter is enabled, it will count from its set value (set by software) up to 1FFFh, at which point TFx is set to 1 to indicate
overflow. Hardware then resets this value to 0.

At overflow the Timer/Counter rolls over to 0000h and continues to count up to 1FFFh, at which point TFx is set to 1 once again.
This cycle continues until the Timer/Counter is disabled.

Mode 1
When in Mode 1, the Timer/Counter is set to 16 bits. The operation of the Timer/Counter in this mode is comparable to that in
Mode 0. However, for this mode all 8 bits of the TLx register are used and therefore, the maximum value before overflow is
FFFFh.

Mode 2
When in Mode 2, the Timer/Counter is set to 8 bits. This mode enables the Timer/Counter to be reloaded with its set value
immediately after overflow. The two timing registers THx (the upper 8 bits) and TLx (the Lower 8 bits) are used differently.

In this mode, THx holds the reload value, which is copied to TLx after overflow is detected, whereas TLx is the 8-bit dedicated
Timer/Counter.

4 3 2 1 0 12 11 10 9 8 7 6 5

THx TLx

MSB LSB

7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

THx TLx

MSB LSB

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 13

Mode 3
When Timer/Counter 1 is configured for operation in Mode 3, it is stopped. When Timer/Counter 0 is configured for operation in
this same mode, the TH0 and TL0 registers operate independently of each other as follows:

• TL0 operates as an 8-bit Timer/Counter, controlled by Timer/Counter 0 mode control bits TMOD.3 and TMOD.2.

• TH0 operates as a dedicated 8-bit Timer, controlled by Timer/Counter 1 mode control bits TMOD.7 and TMOD.6, with no
external gate control.

TL0, if enabled, will count from its set value to FFh, at which point the overflow flag for Timer/Counter 0 - TF0 (TCON.5) - is set
to 1 and then reset to 0 by hardware. TL0 will continue to cycle through from 00h to FFh.

If Timer/Counter 1 is in Mode 3, then TH0, when enabled by Timer/Counter 1’s mode control bits, will respond exactly the same
as TL0, where TF1 (TCON.7) is set to 1 when overflow occurs. However, if Timer/Counter 1 is in Mode 0, 1 or 2, then the
overflow flag, TF1, will be triggered by Timer/Counter 1 and TH0 of Timer/Counter 0.

Serial Interface

Serial Port 0
The serial buffer consists of two separate registers, a transmit buffer and a receive buffer. Writing data to the Special Function
Register SBUF loads this data into the serial output buffer and starts the transmission. Reading from the SBUF register takes
data from the serial receive buffer.

The serial port can simultaneously transmit and receive data. It can also buffer 1 byte at receive, which prevents the receive
data from being lost if the CPU reads the first byte before transmission of the second byte is completed. The serial port can
operate in 4 modes.

Mode 0
Pin RXD serves as input and RXDO as output. TXD outputs the shift clock. 8 bits are transmitted with LSB first. The baud rate is
fixed at 1/12 of the external system clock frequency.

Mode 1
Pin RXD serves as input and TXD serves as serial output. No external shift clock is used. 10 bits are transmitted: a start bit
(always 0), 8 data bits (LSB first), and a stop bit (always 1). On reception, the start bit synchronizes the transmission, 8 data bits
are made available by reading SBUF, and the stop bit sets the flag RB8 in the Special Function Register SCON.

Mode 2
This mode is similar to Mode 1, with two differences. The baud rate is fixed at 1/32 or 1/64 of oscillator frequency, and 11 bits
are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9th bit, and a stop bit (1). The 9th bit can be
used to control the parity of the serial interface: at transmission, bit TB8 in SCON is output as the 9th bit, and at receive, the 9th
bit affects RB8 in the Special Function Register SCON.

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

TH0
(Controlled by TMOD.7

and TMOD.6)

TL0
(Controlled by TMOD.3

and TMOD.2)

MSB LSB MSB LSB

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

THx
(Reload Value)

TLx
(Timer/Counter)

MSB LSB MSB LSB

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

14 CR0115 (v2.0) March 13, 2008

Mode 3
The only difference between Mode 2 and Mode 3 is that the baud rate is variable in Mode 3.

Reception is initialized in Mode 0 by setting the flags in SCON as follows: RI = 0 and REN = 1. In other modes, a start bit when
REN = 1 starts receiving serial data

Multiprocessor Communication
The feature of receiving 9 bits in Modes 2 and 3 can be used for multiprocessor communication. In this case, the slave
processors have bit SM2 in SCON set to 1. When the master processor outputs a slave’s address, it sets the 9th bit to 1,
causing a serial port receive interrupt in all the slaves. The slave processors compare the received byte with their network
address. If there is a match, the addressed slave will clear SM2 and receive the rest of the message, while other slaves will
leave the SM2 bit unaffected and ignore the message. After addressing the slave, the host will output the rest of the message
with the 9th bit set to 0, so no serial port receive interrupt will be generated in unselected slaves.

Serial Port Control Register (SCON)
The function of the serial port depends on the status of the various flags in the Serial Port Control register SCON.

Table 14. The SCON register flags

MSB LSB

SM0 SM1 SM2 REN TB8 RB8 TI RI

Table 15. The SCON register Bit functions

Bit Symbol Function

SCON.7 SM0 Sets baud rate

SCON.6 SM1 Sets baud rate

SCON.5 SM2 Enables multiprocessor communication feature.

SCON.4 REN If set, enables serial reception. Cleared by software to disable
reception.

SCON.3 TB8 The 9th transmitted data bit in Modes 2 and 3. Set or cleared by the
CPU, depending on the function it performs (parity check,
multiprocessor communication etc.)

SCON.2 RB8 In Modes 2 and 3, it is the 9th data bit received. In Mode 1, if SM2 is
0, RB8 is the stop bit. In Mode 0 this bit is not used. Must be cleared
by software.

SCON.1 TI Transmit interrupt flag, set by hardware after completion of a serial
transfer. Must be cleared by software.

SCON.0 RI Receive interrupt flag, set by hardware after completion of a serial
reception. Must be cleared by software

Table 16. Serial Port Modes

SM0 SM1 Mode Description Baud Rate

0 0 0 Shift Register FCLK /12

0 1 1 8-bit UART variable

1 0 2 9-bit UART FCLK /32 or /64

1 1 3 9-bit UART variable

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 15

Table 17. Serial Port baud rates

Mode Baud rate

Mode 0 FCLK / 12

Mode 1,3 Timer 1 overflow rate

Mode 2 SMOD = 0 FCLK / 64

SMOD = 1 FCLK / 32

Note: SMOD is bit 7 in the Special Function Register PCON.

Generating Variable Baud Rate in Modes 1 and 3
In Modes 1 and 3, the Timer 1 overflow rate is used to generate baud rates. If Timer 1 is configured in auto – reload mode, to
establish a baud rate the following equation is used:

 2 SMOD x FCLK
Baud Rate = ----------------------------
 32 x 12 x (256 - TH1)

Reset

Hardware Reset (RST)
A reset is accomplished by holding the RST pin high for at least two instruction cycles (24 clock cycles) while the external clock
(CLK) is running. The CPU responds by generating an internal reset, with the timing shown in Figure 6. The external reset
signal is asynchronous to the internal clock. The RST pin is sampled on the rising edge, every 12 clock cycles.

Figure 6. Reset timing

Note: CLK - clock oscillator input

 RST - external reset input

 Internal Reset - internal signal generated based on an external reset condition

 sample - point at which the external reset input is sampled.

Reset Values
The internal reset signal is derived from the external reset (RST). It drives synchronous registers and flip-flops.

Table 18. Reset values

Register Reset value

PC 0000h

ACC 00000000b

B 00000000b

XP 00000000b

PSW 00000000b

SP 00000000b

DPTR 0000h

P0 11111111b

P1 11111111b

P2 11111111b

P3 11111111b

RST

Internal Reset

CLK

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

16 CR0115 (v2.0) March 13, 2008

Register Reset value

IP 11100000b

IE 01100000b

TMOD 00000000b

TCON 00000000b

TH0 00000000b

TL0 00000000b

TH1 00000000b

TL1 00000000b

SCON 00000000b

SBUF 00000000b

ROMSIZE 00010000b

PCON 01111100b

Interrupts
The TSK51x provides five interrupt sources. There are two external interrupts accessible through pins INT0 and INT1, edge or
level sensitive (rising edge or High level). There are, also, internal interrupts associated with Timer 0 and Timer 1 and an
internal interrupt from the Serial Port.

External Interrupts
The choice between external interrupt level or transition activity is made by setting IT1 and IT0 bits in the Special Function
Register TCON.

When the interrupt event happens, a corresponding Interrupt Control Bit is set (IE0 or IE1). This control bit triggers an interrupt if
the appropriate interrupt bit is enabled.

When the interrupt service routine is vectored, the corresponding control bit (IE0 or IE1) is cleared provided that the edge
triggered mode was selected. If level mode is active, the external requesting source controls flags IE0 or IE1 by the logic level
on pins INT0 or INT1 (0 or 1).

Recognition of an interrupt event is possible if, during low to high transitions, both low and high levels last at least 1 machine
(instruction) cycle (12 clock cycles).

Timer 0 and Timer 1 Interrupts
Timer 0 and 1 interrupts are generated by TF0 and TF1 flags, which are set by the rollover of Timer 0 and 1, respectively. When
an interrupt is generated, the flag that caused this interrupt is cleared by the hardware, if the CPU accessed the corresponding
interrupt service vector. This can be done only if this interrupt is enabled in the IE register.

Serial Port Interrupt
Serial Port interrupt is generated by logical OR of the flags TI and RI in the Special Function Register SCON. TI is set after
completion of the transmit data. RI is set when the last bit of the incoming serial data was read. Neither RI nor TI is cleared by
hardware, so the interrupt service routine must be responsible to clear these flags.

Interrupt Enable Register (IE)
Table 19. The IE register flags

MSB LSB

EA - - ES ET1 EX1 ET0 EX0

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 17

Table 20. The IE register bit functions

Bit Symbol Function

IE.7 EA If cleared, disables all interrupts. If set, bits 0 to 4 enable / disable
interrupts.

IE.6 - Not used

IE.5 - Not used

IE.4 ES If set, enables Serial Port interrupt. If cleared, the Serial Port interrupt is
disabled.

IE.3 ET1 If set, enables Timer 1 overflow interrupt. If cleared, the Timer 1 interrupt
is disabled.

IE.2 EX1 If set, enables external interrupt 1. If cleared, external interrupt 1 is
disabled.

IE.1 ET0 If set, enables Timer 0 overflow interrupt. If cleared, the Timer 0 interrupt
is disabled.

IE.0 EX0 If set, enables external interrupt 0. If cleared, external interrupt 0 is
disabled.

Interrupt Priority Register (IP)
Table 21. The IP register flags

MSB LSB

- - - PS PT1 PX1 PT0 PX0

Table 22. The IP register bit functions

Bit Symbol Function

IP.7 - Not used

IP.6 - Not used

IP.5 - Not used

IP.4 PS If set, defines high priority level for Serial Port interrupt. If cleared,
Serial Port interrupt will be processed at low priority level.

IP.3 PT1 If set, defines high priority level for Timer 1 overflow interrupt. If
cleared, the Timer 1 overflow interrupt will be processed at low priority
level.

IP.2 PX1 If set, defines high priority level for external interrupt 1. If cleared, the
external interrupt 1 will be processed at low priority level.

IP.1 PT0 If set, defines high priority level for Timer 0 overflow interrupt. If
cleared, the Timer 0 overflow interrupt will be processed at low priority
level.

IP.0 PX0 If set, defines high priority level for external interrupt 0. If cleared, the
external interrupt 0 will be processed at low priority level.

Interrupt Priority Level Structure.
There are two priority levels in the TSK51x and any interrupt can be individually programmed to a high or low priority level.
Modifying the appropriate bits in the Special Function Register IP can accomplish this. A low priority interrupt service routine will
be interrupted by a high priority interrupt. However, the high priority interrupt can not be interrupted.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

18 CR0115 (v2.0) March 13, 2008

If two interrupts of the same priority level occur, an internal polling sequence determines which of them will be processed first.
This polling sequence is a second priority structure defined as follows in Table 23.

Table 23. Interrupt Priority Level

Source Priority Within Level

IE0 1 – highest

TF0 2

IE1 3

TF1 4

RI or TI 5 – lowest

Interrupt Handling
The interrupt flags are sampled during each machine cycle. The samples are polled during the next machine cycle. If an
interrupt flag is captured, the interrupt system will generate an LCALL instruction to the appropriate service routine, provided
that this is not disabled by the following conditions:

1. An interrupt of the same or higher priority is processed

2. The current machine cycle is not the last cycle of the instruction (the instruction can not be interrupted)

3. The instruction in progress is RETI or any write to IE or IP registers.

Note that if an interrupt is disabled and the interrupt flag is cleared before the blocking condition is removed, no interrupt will be
generated since the polling cycle will not sample any active interrupt condition. In other words, the interrupt condition is not
remembered. Every polling cycle is new.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 19

On-Chip Debugging
The TSK51A_D provides the following set of additional functional features that facilitate real-time debugging of the
microcontroller:

• Reset, Go, Halt processor control

• Single or multi-step debugging

• Read-write access for internal processor registers including SFRs and PC

• Read-write access for Program memory and Data memory

• Unlimited software breakpoints

• User can specify whether the peripheral’s clocks are stopped when processor enters debug mode.

Adding Debug Functionality to the Standard Core
The debug functionality of the TSK51A_D is provided through the use of an On-Chip Debug System unit (OCDS). The simplified
block diagram of Figure 7 shows the connection between this unit and the standard TSK51A core.

 TCK

 TMS

 TDI

 TDO

Standard
JTAG

interface

MCU
symbol

pins

TSK51A_D OCD Microcontroller

Microcontroller
Core

(TSK51A)

OCDS Interface

OCDS Control
and

Debug Port

Figure 7. Simplified TSK51A_D block diagram

The host computer is connected to the target core using the IEEE 1149.1 (JTAG) standard interface. This is the physical
interface, providing connection to physical pins of the FPGA device in which the core has been embedded.

The Nexus 5001 standard is used as the protocol for communications between the host and all devices that are debug-enabled
with respect to this protocol. This includes all OCD-version microcontrollers, as well as other Nexus-compliant devices such as
frequency generators, logic analyzers, counters, etc.

All such devices are connected in a chain – the Soft Devices chain – which is determined when the design has been
implemented within the target FPGA device and presents in the Devices view (Figure 8). It is not a physical chain, in the sense
that you can see no external wiring – the connections required between the Nexus-enabled devices are made internal to the
FPGA itself.

Figure 8. Nexus-enabled microcontrollers appearing in the Soft Devices chain

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

20 CR0115 (v2.0) March 13, 2008

For microcontrollers such as the TSK51A_D, the Nexus protocol enables you to debug the core through communication with the
OCDS Unit.

Accessing the Debug Environment
Debugging of the embedded code within an OCD-version microcontroller is carried out by starting a debug session. Prior to
starting the session, you must ensure that the design, including one or more OCD-version microcontrollers and their respective
embedded code, has been downloaded to the target physical FPGA device.

To start a debug session for the embedded code of a specific microcontroller in the design, simply right-click on the icon for that
microcontroller, in the Soft Devices region of the view, and choose the Debug command from the pop-up menu that appears.
Alternatively, click on the icon for the microcontroller (to focus it) and choose Processors » Pn » Debug from the main menus,
where n corresponds to the number for the processor in the Soft Devices chain.

The embedded project for the software running in the processor will initially be recompiled and the debug session will
commence. The relevant source code document (either Assembly or C) will be opened and the current execution point will be
set to the first line of executable code (see Figure 9).
Note: You can have multiple debug sessions running simultaneously – one per embedded software project associated with a
microcontroller in the Soft Devices chain.

Figure 9. Starting an embedded code debug session.

The debug environment offers the full suite of tools you would expect to see in order to efficiently debug the embedded code.
These features include:

• Setting Breakpoints

• Adding Watches
• Stepping into and over at both the source (*.C) and instruction (*.asm) level

• Reset, Run and Halt code execution

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 21

• Run to cursor
All of these and other feature commands can be accessed from the Debug menu or the associated Debug toolbar.

Various workspace panels are accessible in the debug environment, allowing you to view/control code-specific features, such as
Breakpoints, Watches and Local variables, as well as information specific to the microcontroller in which the code is running,
such as memory spaces and registers.
These panels can be accessed from the View » Workspace Panels » Embedded sub menu, or by clicking on the Embedded
button at the bottom of the application window and choosing the required panel from the subsequent pop-up menu.

Figure 10. Workspace panels offering code-specific information and controls

Figure 11. Workspace panels offering information specific to the parent processor.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

22 CR0115 (v2.0) March 13, 2008

Full-feature debugging is of course enjoyed at the source code level – from within the source code file itself. To a lesser extent,
debugging can also be carried out from a dedicated debug panel for the processor. To access3 this panel, first double-click on
the icon representing the microcontroller to be debugged, in the Soft Devices region of the view. The Instrument Rack – Soft
Devices panel will appear, with the chosen processor instrument added to the rack (Figure 12).

Figure 12. Accessing debug features from the microcontroller's instrument panel

Note: Each core microcontroller that you have included in the design will appear, when double-clicked, as an Instrument in the
rack (along with any other Nexus-enabled devices).
The Nexus Debugger button provides access to the associated debug panel (Figure 13), which in turn allows you to interrogate
and to a lighter extent control, debugging of the processor and its embedded code, notably with respect to the registers and
memory.

One key feature of the debug panel is that it enables you to specify (and therefore change) the embedded code (HEX file) that is
downloaded to the microcontroller, quickly and efficiently.

For more information on the content and use of processor debug panels, press F1 when the
cursor is over one of these panels.

For further information regarding the use of the embedded tools for the TSK51x, see the Using
the TSK51x/TSK52x Embedded Tools guide.

For comprehensive information with respect to the embedded tools available for the TSK51x,
see the TSK51x/TSK52x Embedded Tools Reference.

3 The debug panels for each of the debug-enabled microcontrollers are standard panels and, as such, can be readily accessed from the View »
Workspace Panels » Instruments sub menu, or by clicking on the Instruments button at the bottom of the application window and choosing
the required panel – for the processor you wish to debug – from the subsequent pop-up menu.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 23

Figure 13. Processor debugging using the associated processor debug panel

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

24 CR0115 (v2.0) March 13, 2008

Instruction Set
All TSK51x instructions are binary code compatible.

Table 24. Notes on data addressing modes

Rn Working register R0-R7

direct 128 internal RAM locations, any l/O port, control or status register

@Ri Indirect internal or external RAM location addressed by register R0 or R1

#data 8-bit constant included in instruction

#data16 16-bit constant included as bytes 2 and 3 of instruction

bit 128 software flags, any bit-addressable l/O pin, control or status bit

A Accumulator

Table 25. Notes on program addressing modes

addr16 Destination address for LCALL and LJMP may be anywhere within the 64KB Program
memory address space.

addr11 Destination address for ACALL and AJMP will be within the same 2KB page of
Program memory as the first byte of the following instruction.

Rel SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/-128 bytes
relative to the first byte of the following instruction.

Instruction Definitions
Table 26 shows the effect various instructions in the set have on the special function register PSW.

Only the carry, auxiliary carry and overflow flags are discussed. The parity bit is always computed from the actual content of the
Accumulator.
Similarly, instructions which alter directly addressed registers could affect the other status flags if the instruction is applied to the
PSW register. Status flags can also be modified by bit manipulation.

Table 26. PSW register flag modification (CY, OV, AC)

Flag Flag
Instruction

CY OV AC
Instruction

CY OV AC

ADD X X X MOV C,bit X

ADDC X X X MUL 0 X

ANL C,bit X ORL C,bit X

ANL C,/bit X ORL C,/bit X

CJNE X RLC X

CLR C 0 RRC X

CPL C X SETB C 1

DA X SUBB X X X

DIV 0 X

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 25

Instruction Set - Functional Groupings
Table 27. Arithmetic operations

Mnemonic Description Width (in
bytes)

No. of Instruction
Cycles for
execution

ADD A,#data Add immediate data to Accumulator 2 1

ADD A,@Ri Add indirect RAM to Accumulator 1 1

ADD A,direct Add direct byte to Accumulator 2 1

ADD A,Rn Add register to Accumulator 1 1

ADDC A,#data Add immediate data to Accumulator with carry
flag

2 1

ADDC A,@Ri Add indirect RAM to Accumulator with carry
flag

1 1

ADDC A,direct Add direct byte to Accumulator with carry flag 2 1

ADDC A,Rn Add register to Accumulator with carry flag 1 1

DA A Decimal adjust Accumulator 1 1

DEC @Ri Decrement indirect RAM 1 1

DEC A Decrement Accumulator 1 1

DEC direct Decrement direct byte 2 1

DEC Rn Decrement register 1 1

DIV A,B Divide Accumulator by B 1 4

INC @Ri Increment indirect RAM 1 1

INC A Increment Accumulator 1 1

INC direct Increment direct byte 2 1

INC DPTR Increment data pointer 1 2

INC Rn Increment register 1 1

MUL A,B Multiply Accumulator and B 1 4

SUBB A,#data Subtract immediate data from Accumulator
with borrow

2 1

SUBB A,@Ri Subtract indirect RAM from Accumulator with
borrow

1 1

SUBB A,direct Subtract direct byte from Accumulator with
borrow

2 1

SUBB A,Rn Subtract register from Accumulator with
borrow

1 1

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

26 CR0115 (v2.0) March 13, 2008

Table 28. Logic operations

Mnemonic Description Width (in
bytes)

No. of Instruction Cycles
for execution

ANL A,#data AND immediate data to Accumulator 2 1

ANL A,@Ri AND indirect RAM to Accumulator 1 1

ANL A,direct AND direct byte to Accumulator 2 1

ANL A,Rn AND register to Accumulator 1 1

ANL direct,#data AND immediate data to direct byte 3 2

ANL direct,A AND Accumulator to direct byte 2 1

CLR A Clear Accumulator 1 1

CPL A Complement Accumulator 1 1

ORL A,#data OR immediate data to Accumulator 2 1

ORL A,@Ri OR indirect RAM to Accumulator 1 1

ORL A,direct OR direct byte to Accumulator 2 1

ORL A,Rn OR register to Accumulator 1 1

ORL direct,#data OR immediate data to direct byte 3 2

ORL direct,A OR Accumulator to direct byte 2 1

RL A Rotate Accumulator left 1 1

RLC A Rotate Accumulator left through carry 1 1

RR A Rotate Accumulator right 1 1

RRC A Rotate Accumulator right through carry 1 1

SWAP A Swap nibbles within the Accumulator 1 1

XRL A,#data Exclusive OR immediate data to
Accumulator

2 1

XRL A,@Ri Exclusive OR indirect RAM to
Accumulator

1 1

XRL A,direct Exclusive OR direct byte to
Accumulator

2 1

XRL A,Rn Exclusive OR register to Accumulator 1 1

XRL direct,#data Exclusive OR immediate data to direct
byte

3 2

XRL direct,A Exclusive OR Accumulator to direct
byte

2 1

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 27

Table 29. Data transfer

Mnemonic Description Width (in
bytes)

No. of Instruction
Cycles for execution

MOV @Ri, #data Move immediate data to indirect RAM 2 1

MOV @Ri,A Move Accumulator to indirect RAM 1 1

MOV @Ri,direct Move direct byte to indirect RAM 2 2

MOV A,#data Move immediate data to Accumulator 2 1

MOV A,@Ri Move indirect RAM to Accumulator 1 1

MOV A,direct Move direct byte to Accumulator 2 1

MOV A,Rn Move register to Accumulator 1 1

MOV direct,#data Move immediate data to direct byte 3 2

MOV direct,@Ri Move indirect RAM to direct byte 2 2

MOV direct,A Move Accumulator to direct byte 2 1

MOV direct,direct Move direct byte to direct byte 3 2

MOV direct,Rn Move register to direct byte 2 2

MOV DPTR, #data16 Load data pointer with a 16-bit
constant

3 2

MOV Rn,#data Move immediate data to register 2 1

MOV Rn,A Move Accumulator to register 1 1

MOV Rn,direct Move direct byte to register 2 2

MOVC A,@A + DPTR Move code byte relative to DPTR to
Accumulator

1 2

MOVC A,@A + PC Move code byte relative to PC to
Accumulator

1 2

MOVX @DPTR,A Move Accumulator to external RAM
(16-bit addr.)

1 2

MOVX @Ri,A Move Accumulator to external RAM
(8-bit addr.)

1 2

MOVX A,@DPTR Move external RAM (16-bit addr.) to
Accumulator

1 2

MOVX A,@Ri Move external RAM (8-bit addr.) to
Accumulator

1 2

POP direct Pop direct byte from stack 2 2

PUSH direct Push direct byte onto stack 2 2

XCH A,@Ri Exchange indirect RAM with
Accumulator

1 1

XCH A,direct Exchange direct byte with
Accumulator

2 1

XCH A,Rn Exchange register with Accumulator 1 1

XCHD A,@Ri Exchange low-order nibble of indirect
RAM with Accumulator

1 1

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

28 CR0115 (v2.0) March 13, 2008

Table 30. Boolean manipulation

Mnemonic Description Width (in
bytes)

No. of Instruction
Cycles for execution

ANL C, /bit AND complement of direct bit to carry flag 2 2

ANL C,bit AND direct bit to carry flag 2 2

CLR bit Clear direct bit 2 1

CLR C Clear carry flag 1 1

CPL bit Complement direct bit 2 1

CPL C Complement carry flag 1 1

MOV bit,C Move carry flag to direct bit 2 2

MOV C,bit Move direct bit to carry flag 2 1

ORL C, /bit OR complement of direct bit to carry flag 2 2

ORL C,bit OR direct bit to carry flag 2 2

SETB bit Set direct bit 2 1

SETB C Set carry flag 1 1

Table 31. Program branches

Mnemonic Description Width (in
bytes)

No. of Instruction
Cycles for execution

ACALL addr11 Absolute subroutine call 2 2

AJMP addr11 Absolute jump 2 2

CJNE @Ri,#data,rel Compare immediate data to indirect
RAM and jump if not equal

3 2

CJNE A,#data,rel Compare immediate data to
Accumulator and jump if not equal

3 2

CJNE A,direct,rel Compare direct byte to Accumulator
and jump if not equal

3 2

CJNE Rn,#data rel Compare immediate data to register
and jump if not equal

3 2

DJNZ direct,rel Decrement direct byte and jump if not
zero

3 2

DJNZ Rn,rel Decrement register and jump if not
zero

2 2

JB bit,rel Jump if direct bit is set 3 2

JBC bit,rel Jump if direct bit is set and clear bit 3 2

JC rel Jump if carry flag is set 2 2

JMP @A + DPTR Jump indirect relative to the DPTR 1 2

JNB bit,rel Jump if direct bit is not set 3 2

JNC rel Jump if carry flag is not set 2 2

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 29

Mnemonic Description Width (in
bytes)

No. of Instruction
Cycles for execution

JNZ rel Jump if Accumulator is not zero 2 2

JZ rel Jump if Accumulator is zero 2 2

LCALL addr16 Long subroutine call 3 2

LJMP addr16 Long jump 3 2

NOP No operation 1 1

RET Return from subroutine 1 2

RETI Return from interrupt 1 2

SJMP rel Short jump (relative addr.) 2 2

Hexadecimal Ordered Instructions
Table 32. Instruction Set in hexadecimal order

Opcode Mnemonic Opcode Mnemonic

00h NOP 10h JBC bit,rel

01h AJMP addr11 11h ACALL addr11

02h LJMP addr16 12h LCALL addr16

03h RR A 13h RRC A

04h INC A 14h DEC A

05h INC direct 15h DEC direct

06h INC @R0 16h DEC @R0

07h INC @R1 17h DEC @R1

08h INC R0 18h DEC R0

09h INC R1 19h DEC R1

0Ah INC R2 1Ah DEC R2

0Bh INC R3 1Bh DEC R3

0Ch INC R4 1Ch DEC R4

0Dh INC R5 1Dh DEC R5

0Eh INC R6 1Eh DEC R6

0Fh INC R7 1Fh DEC R7

20h JB bit.rel 30h JNB bit.rel

21h AJMP addr11 31h ACALL addr11

22h RET 32h RETI

23h RL A 33h RLC A

24h ADD A,#data 34h ADDC A,#data

25h ADD A,direct 35h ADDC A,direct

26h ADD A,@R0 36h ADDC A,@R0

27h ADD A,@R1 37h ADDC A,@R1

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

30 CR0115 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

28h ADD A,R0 38h ADDC A,R0

29h ADD A,R1 39h ADDC A,R1

2Ah ADD A,R2 3Ah ADDC A,R2

2Bh ADD A,R3 3Bh ADDC A,R3

2Ch ADD A,R4 3Ch ADDC A,R4

2Dh ADD A,R5 3Dh ADDC A,R5

2Eh ADD A,R6 3Eh ADDC A,R6

2Fh ADD A,R7 3Fh ADDC A,R7

40h JC rel 50h JNC rel

41h AJMP addr11 51h ACALL addr11

42h ORL direct,A 52h ANL direct,A

43h ORL direct,#data 53h ANL direct,#data

44h ORL A,#data 54h ANL A,#data

45h ORL A,direct 55h ANL A,direct

46h ORL A,@R0 56h ANL A,@R0

47h ORL A,@R1 57h ANL A,@R1

48h ORL A,R0 58h ANL A,R0

49h ORL A,R1 59h ANL A,R1

4Ah ORL A,R2 5Ah ANL A,R2

4Bh ORL A,R3 5Bh ANL A,R3

4Ch ORL A,R4 5Ch ANL A,R4

4Dh ORL A,R5 5Dh ANL A,R5

4Eh ORL A,R6 5Eh ANL A,R6

4Fh ORL A,R7 5Fh ANL A,R7

60h JZ rel 70h JNZ rel

61h AJMP addr11 71h ACALL addr11

62h XRL direct,A 72h ORL C,bit

63h XRL direct,#data 73h JMP @A+DPTR

64h XRL A,#data 74h MOV A,#data

65h XRL A,direct 75h MOV direct,#data

66h XRL A,@R0 76h MOV @R0,#data

67h XRL A,@R1 77h MOV @R1,#data

68h XRL A,R0 78h MOV R0.#data

69h XRL A,R1 79h MOV R1.#data

6Ah XRL A,R2 7Ah MOV R2.#data

6Bh XRL A,R3 7Bh MOV R3.#data

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 31

Opcode Mnemonic Opcode Mnemonic

6Ch XRL A,R4 7Ch MOV R4.#data

6Dh XRL A,R5 7Dh MOV R5.#data

6Eh XRL A,R6 7Eh MOV R6.#data

6Fh XRL A,R7 7Fh MOV R7.#data

80h SJMP rel 90h MOV DPTR,#data16

81h AJMP addr11 91h ACALL addr11

82h ANL C,bit 92h MOV bit,C

83h MOVC A,@A+PC 93h MOVC A,@A+DPTR

84h DIV AB 94h SUBB A,#data

85h MOV direct,direct 95h SUBB A,direct

86h MOV direct,@R0 96h SUBB A,@R0

87h MOV direct,@R1 97h SUBB A,@R1

88h MOV direct,R0 98h SUBB A,R0

89h MOV direct,R1 99h SUBB A,R1

8Ah MOV direct,R2 9Ah SUBB A,R2

8Bh MOV direct,R3 9Bh SUBB A,R3

8Ch MOV direct,R4 9Ch SUBB A,R4

8Dh MOV direct,R5 9Dh SUBB A,R5

8Eh MOV direct,R6 9Eh SUBB A,R6

8Fh MOV direct,R7 9Fh SUBB A,R7

A0h ORL C, /bit B0h ANL C, /bit

A1h AJMP addr11 B1h ACALL addr11

A2h MOV C,bit B2h CPL bit

A3h INC DPTR B3h CPL C

A4h MUL AB B4h CJNE A,#data,rel

A5h - B5h CJNE A,direct,rel

A6h MOV @R0,direct B6h CJNE @R0,#data,rel

A7h MOV @R1,direct B7h CJNE @R1,#data,rel

A8h MOV R0,direct B8h CJNE R0,#data,rel

A9h MOV R1,direct B9h CJNE R1,#data,rel

AAh MOV R2,direct BAh CJNE R2,#data,rel

ABh MOV R3,direct BBh CJNE R3,#data,rel

ACh MOV R4,direct BCh CJNE R4,#data,rel

ADh MOV R5,direct BDh CJNE R5,#data,rel

AEh MOV R6,direct BEh CJNE R6,#data,rel

AFh MOV R7,direct BFh CJNE R7,#data,rel

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

32 CR0115 (v2.0) March 13, 2008

Opcode Mnemonic Opcode Mnemonic

C0h PUSH direct D0h POP direct

C1h AJMP addr11 D1h ACALL addr11

C2h CLR bit D2h SETB bit

C3h CLR C D3h SETB C

C4h SWAP A D4h DA A

C5h XCH A,direct D5h DJNZ direct,rel

C6h XCH A,@R0 D6h XCHD A,@R0

C7h XCH A,@R1 D7h XCHD A,@R1

C8h XCH A,R0 D8h DJNZ R0,rel

C9h XCH A,R1 D9h DJNZ R1,rel

CAh XCH A,R2 DAh DJNZ R2,rel

CBh XCH A,R3 DBh DJNZ R3,rel

CCh XCH A,R4 DCh DJNZ R4,rel

CDh XCH A,R5 DDh DJNZ R5,rel

CEh XCH A,R6 DEh DJNZ R6,rel

CFh XCH A,R7 DFh DJNZ R7,rel

E0h MOVX A,@DPTR F0h MOVX @DPTR,A

E1h AJMP addr11 F1h ACALL addr11

E2h MOVX A,@R0 F2h MOVX @R0,A

E3h MOVX A,@R1 F3h MOVX @R1,A

E4h CLR A F4h CPL A

E5h MOV A,direct F5h MOV direct,A

E6h MOV A,@R0 F6h MOV @R0,A

E7h MOV A,@R1 F7h MOV @R1,A

E8h MOV A,R0 F8h MOV R0,A

E9h MOV A,R1 F9h MOV R1,A

EAh MOV A,R2 FAh MOV R2,A

EBh MOV A,R3 FBh MOV R3,A

ECh MOV A,R4 FCh MOV R4,A

EDh MOV A,R5 FDh MOV R5,A

EEh MOV A,R6 FEh MOV R6,A

EFh MOV A,R7 FFh MOV R7,A

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 33

Instruction Set – Detailed Reference
In the following detailed instruction set listing, @Ri is an indirect internal or external RAM location addressed by register R0 or
R1. When this operand is used, the encoding for the instruction contains an entry ‘I’. This will be replaced by a 0 or 1, depending
on whether the register used is R0 or R1 respectively.

Similarly, the operand Rn can represent any of the eight working registers (R0-R7). The table below shows the registers that Rn
can represent. The listed 3-bit value for each register replaces the rrr entry in the encoding for an instruction that uses this
operand.

Register rrr

R0 000

R1 001

R2 010

R3 011

R4 100

R5 101

R6 110

R7 111

ACALL addr11
Function: Absolute call

Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction increments the PC
twice to obtain the address of the following instruction, then pushes the 16-bit result onto the stack (low-order
byte first) and increments the stack pointer twice. The destination address is obtained by successively
concatenating the five high-order bits of the incremented PC, op code bits 7-5, and the second byte of the
instruction. The subroutine called must therefore start within the same 2K block of Program memory as the
first byte of the instruction following ACALL. No flags are affected.

Operation: ACALL

(PC) ← (PC) + 2

(SP) ← (SP) + 1

((SP)) ← (PC7-0)

(SP) ← (SP) + 1

((SP)) ← (PC15-8)

(PC10-0) ← page address

Bytes: 2

Encoding:

a10 a9 a8 1 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

ADD A, <src-byte>
Function: Add

Description: ADD adds the byte variable indicated to the accumulator, leaving the result in the Accumulator. The carry and
auxiliary carry flags are set, respectively, if there is a carry out of bit 7 or bit 3, and cleared otherwise. When
adding unsigned integers, the carry flag indicates an overflow occurred. OV is set if there is a carry out of bit 6
but not out of bit 7, or a carry out of bit 7 but not out of bit 6; otherwise OV is cleared. When adding signed
integers, OV indicates a negative number produced as the sum of two positive operands, or a positive sum
from two negative operands. Four source operand addressing modes are allowed: register, direct, register-
indirect, or immediate.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

34 CR0115 (v2.0) March 13, 2008

ADD A, Rn
Operation: ADD

(A) ← (A) + (Rn)

Bytes: 1

Encoding:

0 0 1 0 1 r r r

ADD A, direct
Operation: ADD

(A) ← (A) + (direct)

Bytes: 2

Encoding:

0 0 1 0 0 1 0 1 direct address

ADD A, @Ri
Operation: ADD

(A) ← (A) + ((Ri))

Bytes: 1

Encoding:

0 0 1 0 0 1 1 i

ADD A, #data
Operation: ADD

(A) ← (A) + #data

Bytes: 2

Encoding:

0 0 1 0 0 1 0 0 immediate data

ADDC A, < src-byte>
Function: Add with carry

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator contents, leaving
the result in the accumulator. The carry and auxiliary carry flags are set, respectively, if there is a carry out of
bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow
occurred. OV is set if there is a carry out of bit 6 but not out of bit 7, or a carry out of bit 7 but not out of bit 6;
otherwise OV is cleared. When adding signed integers, OV indicates a negative number produced as the sum
of two positive operands or a positive sum from two negative operands. Four source operand-addressing
modes are allowed: register, direct, register- indirect, or immediate.

ADDC A, Rn
Operation: ADDC

(A) ← (A) + (C) + (Rn)

Bytes: 1

Encoding:

0 0 1 1 1 r r r

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 35

ADDC A, direct
Operation: ADDC

(A) ← (A) + (C) + (direct)

Bytes: 2

Encoding:

0 0 1 1 0 1 0 1 direct address

ADDC A, @Ri
Operation: ADDC

(A) ← (A) + (C) + ((Ri))

Bytes: 1

Encoding:

0 0 1 1 0 1 1 i

ADDC A, #data
Operation: ADDC

(A) ← (A) + (C) + #data

Bytes: 2

Encoding:

0 0 1 1 0 1 0 0 immediate data

AJMP addr11
Function: Absolute jump

Description: AJMP transfers program execution to the indicated address, which is formed at run- time by concatenating the
high-order five bits of the PC (after incrementing the PC twice), op code bits 7-5, and the second byte of the
instruction. The destination must therefore be within the same 2K block of Program memory as the first byte of
the instruction following AJMP.

Operation: AJM P

(PC) ← (PC) + 2

(PC10-0) ← page address

Bytes: 2

Encoding:

a10 a9 a8 0 0 0 0 1 a7 a6 a5 a4 a3 a2 a1 a0

ANL <dest-byte>, <src-byte>
Function: Logical AND for byte variables

Description: ANL performs the bit wise logical AND operation between the variables indicated and stores the results in the
destination variable. No flags are affected (except P, if <dest-byte> = A). The two operands allow six
addressing mode combinations. When the destination is the Accumulator, the source can use register, direct,
register-indirect, or immediate addressing; when the destination is a direct address, the source can be the
Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

36 CR0115 (v2.0) March 13, 2008

ANL A,Rn
Operation: ANL

(A) ← (A) ^ (Rn)

Bytes: 1

Encoding:

0 1 0 1 1 r r r

ANL A,direct
Operation: ANL

(A) ← (A) ^ (direct)

Bytes: 2

Encoding:

0 1 0 1 0 1 0 1 direct address

ANL A, @Ri
Operation: ANL

(A) ← (A) ^ ((Ri))

Bytes: 1

Encoding:

0 1 0 1 0 1 1 i

ANL A, #data
Operation: ANL

(A) ← (A) ^ #data

Bytes: 2

Encoding:

0 1 0 1 0 1 0 0 immediate data

ANL direct,A
Operation: ANL

(direct) ← (direct) ^ (A)

Bytes: 2

Encoding:

0 1 0 1 0 0 1 0 direct address

ANL direct, #data
Operation: ANL

(direct) ← (direct) ^ #data

Bytes: 3

Encoding:

0 1 0 1 0 0 1 1

direct address

immediate data

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 37

ANL C, <src-bit>
Function: Logical AND for bit variables

Description: If the Boolean value of the source bit is a logic 0 then clear the carry flag; otherwise leave the carry flag in its
current state. (A slash “/” preceding the operand in the assembly language indicates that the logical
complement of the addressed bit is used as the source value, but the source bit itself is not affected). No other
flags are affected. Only direct bit addressing is allowed for the source operand.

ANL C,bit
Operation: ANL

(C) ← (C) ^ (bit)

Bytes: 2

Encoding:

1 0 0 0 0 0 1 0 bit address

ANL C,/bit
Operation: ANL

(C) ← (C) ^ / (bit)

Bytes: 2

Encoding:

1 0 1 1 0 0 0 0 bit address

CJNE <dest-byte >, < src-byte >, rel
Function: Compare and jump if not equal

Description: CJNE compares the magnitudes of the first two operands and branches if their values are not equal. The
branch destination is computed by adding the signed relative displacement in the last instruction byte to the
PC, after incrementing the PC to the start of the next instruction. The carry flag is set if the unsigned integer
value of <dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared.
Neither operand is affected. The first two operands allow four addressing mode combinations: the
Accumulator may be compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

CJNE A,direct,rel
Operation: CJNE

(PC) ← (PC) + 3

if (A) < > (direct)

then (PC) ← (PC) + relative offset

if (A) < (direct)

then (C) ←1

else (C) ←0

Bytes: 3

Encoding:

1 0 1 1 0 1 0 1

direct address

relative address

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

38 CR0115 (v2.0) March 13, 2008

CJNE A, #data,rel
Operation: CJNE

(PC) ← (PC) + 3

if (A) < > data

then (PC) ← (PC) + relative offset

if (A) < data

then (C) ←1

else (C) ← 0

Bytes: 3

Encoding:

1 0 1 1 0 1 0 0

immediate data

relative address

CJNE Rn, #data, rel
Operation: CJNE

(PC) ← (PC) + 3

if (Rn) < > data

then (PC) ← (PC) + relative offset

if (Rn) < data

then (C) ← 1

else (C) ← 0

Bytes: 3

Encoding:

1 0 1 1 1 r r r

immediate data

relative address

CJNE @Ri, #data, rel
Operation: CJNE

(PC) ← (PC) + 3

if ((Ri)) < > data

then (PC) ← (PC) + relative offset

if ((Ri)) < data

then (C) ← 1

else (C) ← 0

Bytes: 3

Encoding:

1 0 1 1 0 1 1 i

immediate data

relative address

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 39

CLR A
Function: Clear Accumulator

Description: The Accumulator is cleared (all bits set to zero). No flags are affected.

Operation: CLR

(A) ← 0

Bytes: 1

Encoding:

1 1 1 0 0 1 0 0

CLR bit
Function: Clear bit

Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on any directly
addressable bit.

Operation: CLR

(bit) ← 0

Bytes: 2

Encoding:

1 1 0 0 0 0 1 0 bit address

CLR C
Function: Clear carry flag

Description: The carry flag is cleared (reset to zero). No other flags are affected.

Operation: CLR

(C) ← 0

Bytes: 1

Encoding:

1 1 0 0 0 0 1 1

CPL A
Function: Complement Accumulator

Description: Each bit of the Accumulator is logically complemented (one’s complement). Bits which previously contained a
one are changed to zero and vice versa. No flags are affected.

Operation: CPL

(A) ← / (A)

Bytes: 1

Encoding:

1 1 1 1 0 1 0 0

CPL bit
Function: Complement bit

Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and vice versa. No
other flags are affected. CPL can operate on any directly addressable bit.

Note: When this instruction is used to modify an output pin, the value used as the original data will be read from the output data
latch, not the input pin.

Operation: CPL

(bit) ← / (bit)

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

40 CR0115 (v2.0) March 13, 2008

Bytes: 2

Encoding:

1 0 1 1 0 0 1 0 bit address

CPL C
Function: Complement carry flag

Description: The carry flag is complemented. If the flag had been a one, it is changed to zero and vice versa. No other
flags are affected.

Operation: CPL

(C) ← / (C)

Bytes: 1

Encoding:

1 0 1 1 0 0 1 1

DA A
Function: Decimal adjust Accumulator for addition

Description: DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two variables (each in
packed BCD format), producing two four-bit digits. Any ADD or ADDC instruction may have been used to
perform the addition. If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is
one, six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This internal
addition would set the carry flag if a carry-out of the low-order four-bit field propagated through all high-order
bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1111xxxx), these high-
order bits are incremented by six, producing the proper BCD digit in the high-order nibble. Again, this would
set the carry flag if there was a carry-out of the high-order bits, but wouldn't clear the carry. The carry flag thus
indicates if the sum of the original two BCD variables is greater than 100, allowing multiple precision decimal
addition. OV is not affected.

All of this occurs during the one instruction cycle. This instruction performs the decimal conversion by simply
adding 00h , 06h , 60h , or 66h to the Accumulator, depending on initial Accumulator and PSW register
conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD notation, nor does DA A apply to decimal
subtraction.
Operation: DA

contents of Accumulator are BCD

if [[(A3-0) > 9] ∨ [(AC) = 1]]

then (A3-0) ← (A3-0) + 6

and

if [[(A7-4) > 9] ∨ [(C) = 1]]

then (A7-4) ← (A7-4) + 6

Bytes: 1

Encoding:

1 1 0 1 0 1 0 0

DEC byte
Function: Decrement

Description: The variable indicated is decremented by 1. An original value of 00h will underflow to 0FFh. No flags are
affected. Four operand addressing modes are allowed: Accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 41

DEC A
Operation: DEC

(A) ← (A) - 1

Bytes: 1

Encoding:

0 0 0 1 0 1 0 0

DEC Rn
Operation: DEC

(Rn) ← (Rn) - 1

Bytes: 1

Encoding:

0 0 0 1 1 r r r

DEC direct
Operation: DEC

(direct) ← (direct) - 1

Bytes: 2

Encoding:

0 0 0 1 0 1 0 1 direct address

DEC @Ri
Operation: DEC

((Ri)) ← ((Ri)) - 1

Bytes: 1

Encoding:

0 0 0 1 0 1 1 i

DIV AB
Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit integer in register B.
The Accumulator receives the integer part of the quotient; register B receives the integer remainder. The carry
and OV flags will be cleared.

Exception: If B had originally contained 00h, the values returned in the Accumulator and B register will be undefined and
the overflow flag will be set. The carry flag is cleared in any case.

Operation: DIV

(A) ← 15-8

 (A) / (B)

(B) ← 7-0

Bytes: 1

Encoding:

1 0 0 0 0 1 0 0

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

42 CR0115 (v2.0) March 13, 2008

DJNZ <byte>, <rel-addr>
Function: Decrement and jump if not zero

Description: DJNZ decrements the location indicated by 1, and branches to the address indicated by the second operand if
the resulting value is not zero. An original value of 00h will underflow to 0FFh. No flags are affected. The
branch destination would be computed by adding the signed relative-displacement value in the last instruction
byte to the PC, after incrementing the PC to the first byte of the following instruction. The location
decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

DJNZ Rn,rel
Operation: DJNZ

(PC) ← (PC) + 2

(Rn) ← (Rn) - 1

if (Rn) > 0 or (Rn) < 0

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

1 1 0 1 1 r r r rel. address

DJNZ direct,rel
Operation: DJNZ

(PC) ← (PC) + 2

(direct) ← (direct) - 1

if (direct) > 0 or (direct) < 0

then (PC) ← (PC) + rel

Bytes: 3

Encoding:

1 1 0 1 0 1 0 1

direct address

relative address

INC <byte>
Function: Increment

Description: INC increments the indicated variable by 1. An original value of 0FFh will overflow to 00h. No flags are
affected. Four operand addressing modes are allowed: Accumulator, register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

INC A
Operation: INC

(A) ← (A) + 1

Bytes: 1

Encoding:

0 0 0 0 0 1 0 0

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 43

INC Rn
Operation: INC

(Rn) ← (Rn) + 1

Bytes: 1

Encoding:

0 0 0 0 1 r r r

INC direct
Operation: INC

(direct) ← (direct) + 1

Bytes: 2

Encoding:

0 0 0 0 0 1 0 1 direct address

INC @Ri
Operation: INC

((Ri)) ← ((Ri)) + 1

Bytes: 1

Encoding:

0 0 0 0 0 1 1 i

INC DPTR
Function: Increment data pointer
Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 216) is performed; an overflow of the low-

order byte of the data pointer (DPL) from 0FFh to 00h will increment the high-order byte (DPH). No flags are
affected. This is the only 16-bit register which can be incremented.

Operation: INC

(DPTR) ← (DPTR) + 1

Bytes: 1

Encoding:

1 0 1 0 0 0 1 1

JB bit, rel
Function: Jump if bit is set

Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags
are affected.

Operation: JB

(PC) ← (PC) + 3

if (bit) = 1

then (PC) ← (PC) + rel

Bytes: 3

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

44 CR0115 (v2.0) March 13, 2008

Encoding:

0 0 1 0 0 0 0 0

bit address

relative address

JBC bit,rel
Function: Jump if bit is set and clear bit

Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with the next instruction. In
either case, clear the designated bit. The branch destination is computed by adding the signed relative
displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data will be read from the output data
latch, not the input pin.
Operation: JBC

(PC) ← (PC) + 3

if (bit) = 1

then (bit) ← 0

(PC) ← (PC) + rel

Bytes: 3

Encoding:

0 0 0 1 0 0 0 0

bit address

relative address

JC rel
Function: Jump if carry flag is set

Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next instruction. The branch
destination is computed by adding the signed relative- displacement in the second instruction byte to the PC,
after incrementing the PC twice. No flags are affected.

Operation: JC

(PC) ← (PC) + 2

if (C) = 1

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

0 1 0 0 0 0 0 0 relative address

JMP @A + DPTR
Function: Jump indirect relative to DPTR

Description: Add the eight-bit unsigned contents of the Accumulator with the 16-bit data pointer (DPTR), and load the
resulting sum into the Program Counter. This will be the address for subsequent instruction fetches. Sixteen-
bit addition is performed (modulo 216): a carry-out from the low-order eight bits propagates through the higher-
order bits. Neither the Accumulator nor the data pointer is altered. No flags are affected.

Operation: JMP

(PC) ← (A) + (DPTR)

Bytes: 1

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 45

0 1 1 1 0 0 1 1

JNB bit,rel
Function: Jump if bit is not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the third instruction byte to the
PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No flags
are affected.

Operation: JNB

(PC) ← (PC) + 3

if (bit) = 0

then (PC) ← (PC) + rel.

Bytes: 3

Encoding:

0 0 1 1 0 0 0 0

bit address

relative address

JNC rel
Function: Jump if carry flag is not set

Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the second instruction byte to
the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

Operation: JNC

(PC) ← (PC) + 2

if (C) = 0

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

0 1 0 1 0 0 0 0 relative address

JNZ rel
Function: Jump if Accumulator is not zero

Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.

Operation: JNZ

(PC) ← (PC) + 2

if (A) ≠ 0

then (PC) ← (PC) + rel.

Bytes: 2

Encoding:

0 1 1 1 0 0 0 0 relative address

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

46 CR0115 (v2.0) March 13, 2008

JZ rel
Function: Jump if Accumulator is zero

Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.

Operation: JZ

(PC) ← (PC) + 2

if (A) = 0

then (PC) ← (PC) + rel

Bytes: 2

Encoding:

0 1 1 0 0 0 0 0 relative address

LCALL addr16
Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the Program Counter
to generate the address of the next instruction and then pushes the 16-bit result onto the Stack (low byte first),
incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are then loaded,
respectively, with the second and third bytes of the LCALL instruction. Program execution continues with the
instruction at this address. The subroutine may therefore begin anywhere in the full 64KB Program memory
address space. No flags are affected.

Operation: LCALL

(PC) ← (PC) + 3

(SP) ← (SP) + 1

((SP)) ← (PC7-0)

(SP) ← (SP) + 1

((SP)) ← (PC15-8)

(PC) ← addr15-0

Bytes: 3

Encoding:

0 0 0 1 0 0 1 0

addr15-8

addr7-0

LJMP addr16
Function: Long jump

Description: LJMP causes an unconditional branch to the indicated address, by loading the high- order and low-order bytes
of the PC (respectively) with the second and third instruction bytes. The destination may therefore be
anywhere in the full 64KB Program memory address space. No flags are affected.

Operation: LJMP

(PC) ← addr15... addr0

Bytes: 3

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 47

Encoding:

0 0 0 0 0 0 1 0

addr15-8

addr7-0

MOV <dest-byte>, <src-byte>
Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the first operand.
The source byte is not affected. No other register or flag is affected. This is by far the most flexible operation.
Fifteen combinations of source and destination addressing modes are allowed.

MOV A,Rn
Operation: MOV

(A) ← (Rn)

Bytes: 1

Encoding:

1 1 1 0 1 r r r

MOV A,direct
Operation: MOV

(A) ← (direct)

Bytes: 2

Note: MOV A,ACC is not a valid instruction. The content of the Accumulator after the execution of this instruction is undefined.

Encoding:

1 1 1 0 0 1 0 1 direct address

MOV A,@Ri
Operation: MOV

(A) ← ((Ri))

Bytes: 1

Encoding:

1 1 1 0 0 1 1 i

MOV A, #data
Operation: MOV

(A) ← #data

Bytes: 2

Encoding:

0 1 1 1 0 1 0 0 immediate data

MOV Rn,A
Operation: MOV

(Rn) ← (A)

Bytes: 1

Encoding:

1 1 1 1 1 r r r

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

48 CR0115 (v2.0) March 13, 2008

MOV Rn,direct
Operation: MOV

(Rn) ← (direct)

Bytes: 2

Encoding:

1 0 1 0 1 r r r direct address

MOV Rn, #data
Operation: MOV

(Rn) ← #data

Bytes: 2

Encoding:

0 1 1 1 1 r r r immediate data

MOV direct,A
Operation: MOV

(direct) ← (A)

Bytes: 2

Encoding:

1 1 1 1 0 1 0 1 direct address

MOV direct,Rn
Operation: MOV

(direct) ← (Rn)

Bytes: 2

Encoding:

1 0 0 0 1 r r r direct address

MOV direct,direct
Operation: MOV

(direct) ← (direct)

Bytes: 3

Encoding:

1 0 0 0 0 1 0 1

Direct address (source)

Direct address (destination)

MOV direct, @ Ri
Operation: MOV

(direct) ← ((Ri))

Bytes: 2

Encoding:

1 0 0 0 0 1 1 i direct address

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 49

MOV direct, #data
Operation: MOV

(direct) ← #data

Bytes: 3

Encoding:

0 1 1 1 0 1 0 1

direct address

immediate data

MOV @ Ri,A
Operation: MOV

((Ri)) ← (A)

Bytes: 1

Encoding:

1 1 1 1 0 1 1 i

MOV @ Ri,direct
Operation: MOV

((Ri)) ← (direct)

Bytes: 2

Encoding:

1 0 1 0 0 1 1 i direct address

MOV @ Ri,#data
Operation: MOV

((Ri)) ← #data

Bytes: 2

Encoding:

0 1 1 1 0 1 1 i immediate data

MOV <dest-bit>, <src-bit>
Function: Move bit data

Description: The Boolean variable indicated by the second operand is copied into the location specified by the first
operand. One of the operands must be the carry flag; the other may be any directly addressable bit. No other
register or flag is affected.

MOV C,bit
Operation: MOV

(C) ← (bit)

Bytes: 2

Encoding:

1 0 1 0 0 0 1 0 bit address

MOV bit,C
Operation: MOV

(bit) ← (C)

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

50 CR0115 (v2.0) March 13, 2008

Bytes: 2

Encoding:

1 0 0 1 0 0 1 0 bit address

MOV DPTR, #data16
Function: Load data pointer with a 16-bit constant

Description: The data pointer is loaded with the 16-bit constant indicated. The 16 bit constant is loaded into the second and
third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte (DPL) holds
the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

Operation: MOV

(DPTR) ← #data15..0

DPH DPL ← #data15...8 #data7..0

Bytes: 3

Encoding:

1 0 0 1 0 0 0 0

immediate data 15-8

immediate data 7-0

MOVC A, @A + <base-reg>
Function: Move code byte

Description The MOVC instructions load the Accumulator with a code byte, or constant from Program memory. The
address of the byte fetched is the sum of the original unsigned eight-bit Accumulator contents and the
contents of a sixteen-bit base register, which may be either the data pointer or the PC. In the latter case, the
PC is incremented to the address of the following instruction before being added to the Accumulator;
otherwise the base register is not altered. Sixteen-bit addition is performed so a carry-out from the low-order
eight bits may propagate through higher-order bits. No flags are affected.

MOVC A, @A + DPTR
Operation: MOVC

(A) ← ((A) + (DPTR))

Bytes: 1

Encoding:

1 0 0 1 0 0 1 1

MOVC A, @A + PC
Operation: MOVC

(PC) ← (PC) + 1

(A) ← ((A) + (PC))

Bytes: 1

Encoding:

1 0 0 0 0 0 1 1

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 51

MOVX <dest-byte>, <src-byte>
Function: Move external

Description: The MOVX instructions transfer data between the Accumulator and a byte of external Data memory, hence
the X appended to MOV. There are two types of instructions, differing in whether they provide an 8-bit or 16-
bit indirect address to the external Data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an 8-bit address. In the second
type, the data pointer generates a 16-bit address.

MOVX A,@Ri
Operation: MOVX

(A) ← ((Ri))

Bytes: 1

Encoding:

1 1 1 0 0 0 1 i

MOVX A,@DPTR
Operation: MOVX

(A) ← ((DPTR))

Bytes: 1

Encoding:

1 1 1 0 0 0 0 0

MOVX @Ri,A
Operation: MOVX

((Ri)) ← (A)

Bytes: 1

Encoding:

1 1 1 1 0 0 1 i

MOVX @DPTR,A
Operation: MOVX

((DPTR)) ← (A)

Bytes: 1

Encoding:

1 1 1 1 0 0 0 0

MUL AB
Function: Multiply

Description: MUL AB multiplies the unsigned 8-bit integers in the Accumulator and register B. The low-order byte of the 16-
bit product is left in the Accumulator and the high-order byte in register B. If the product is greater than 255
(0FFh) the overflow flag is set; otherwise it is cleared. The carry flag is always cleared.

Operation: MUL

(A) ←7-0

 (A) x (B)

(B) ←15-8

Bytes: 1

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

52 CR0115 (v2.0) March 13, 2008

Encoding:

1 0 1 0 0 1 0 0

NOP
Function: No operation

Description: Execution continues at the following instruction. Other than the PC, no registers or flags are affected.

Operation: NOP

 (PC) ← (PC) + 1)

Bytes: 1

Encoding:

0 0 0 0 0 0 0 0

ORL <dest-byte>, <src-byte>
Function: Logical OR for byte variables

Description: ORL performs the bit wise logical OR operation between the indicated variables, storing the results in the
destination byte. No flags are affected (except P (parity bit), if <dest-byte> = A).

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the
source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct
address, the source can be either the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

ORL A,Rn
Operation: ORL

(A) ← (A) ∨ (Rn)

Bytes: 1

Encoding:

0 1 0 0 1 r r r

ORL A,direct
Operation: ORL

(A) ← (A) ∨ (direct)

Bytes: 2

Encoding:

0 1 0 0 0 1 0 1 direct address

ORL A,@Ri
Operation: ORL

(A) ← (A) ∨ ((Ri))

Bytes: 1

Encoding:

0 1 0 0 0 1 1 i

ORL A,#data
Operation: ORL

(A) ← (A) ∨ #data

Bytes: 2

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 53

Encoding:

0 1 0 0 0 1 0 0 immediate data

ORL direct,A
Operation: ORL

(direct) ← (direct) ∨ (A)

Bytes: 2

Encoding:

0 1 0 0 0 0 1 0 direct address

ORL direct, #data
Operation: ORL

(direct) ← (direct) ∨ #data

Bytes: 3

Encoding:

0 1 0 0 0 0 1 1

direct address

Immediate data

ORL C, <src-bit>
Function: Logical OR direct bit with carry flag

Description: Set the carry flag if the Boolean value is a logic 1; leave the carry in its current state otherwise. A slash (“/”)
preceding the operand in the assembly language indicates that the logical complement of the addressed bit is
used as the source value, but the source bit itself is not affected. No other flags are affected.

ORL C,bit
Operation: ORL

(C) ← (C) ∨ (bit)

Bytes: 2

Encoding:

0 1 1 1 0 0 1 0 bit address

ORL C,/bit
Operation: ORL

(C) ← (C) ∨ / (bit)

Bytes: 2

Encoding:

1 0 1 0 0 0 0 0 bit address

POP direct
Function: Pop from Stack

Description: The contents of the internal RAM location addressed by the Stack Pointer are read, and the Stack Pointer is
decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are
affected.

Operation: POP

(direct) ← ((SP))

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

54 CR0115 (v2.0) March 13, 2008

(SP) ← (SP) - 1

Bytes: 2

Encoding:

1 1 0 1 0 0 0 0 direct address

PUSH direct
Function: Push onto Stack

Description: The Stack Pointer is incremented by one. The contents of the indicated variable are then copied into the
internal RAM location addressed by the Stack Pointer. Otherwise no flags are affected.

Operation: PUSH

(SP) ← (SP) + 1

((SP)) ← (direct)

Bytes: 2

Encoding:

1 1 0 0 0 0 0 0 direct address

RET
Function: Return from subroutine

Description: RET pops the high and low-order bytes of the PC successively from the Stack, decrementing the Stack
Pointer by two. Program execution continues at the resulting address, generally the instruction immediately
following an ACALL or LCALL. No flags are affected.

Operation: RET

(PC15-8) ← ((SP))

(SP) ← (SP) - 1

(PC7-0) ← ((SP))

(SP) ← (SP) - 1

Bytes: 1

Encoding:

0 0 1 0 0 0 1 0

RETI
Function: Return from interrupt

Description: RETI pops the high and low-order bytes of the PC successively from the Stack, and restores the interrupt logic
to accept additional interrupts at the same priority level as the one just processed. The Stack Pointer is left
decremented by two. No other registers are affected

The PSW register is not automatically restored to its pre-interrupt status. Program execution continues at the
resulting address, which is generally the instruction immediately after the point at which the interrupt request
was detected. If a lower or same-level interrupt is pending when the RETI instruction is executed, that one
instruction will be executed before the pending interrupt is processed.

Operation: RETI

(PC15-8) ← ((SP))

(SP) ← (SP) - 1

(PC7-0) ← ((SP))

(SP) ← (SP) - 1

Bytes: 1

Encoding:

0 0 1 1 0 0 1 0

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 55

RL A
Function: Rotate Accumulator left

Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No flags
are affected.

Operation: RL

(An + 1) ← (An) n = 0-6

(A0) ← (A7)

Bytes: 1

Encoding:

0 0 1 0 0 0 1 1

RLC A
Function: Rotate Accumulator left through carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into the
carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.

Operation: RLC

(An + 1) ← (An) n = 0-6

(A0) ← (C)

(C) ← (A7)

Bytes: 1

Encoding:

0 0 1 1 0 0 1 1

RR A
Function: Rotate Accumulator right

Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No flags
are affected.

Operation: RR

(An) ← (An + 1) n = 0-6

(A7) ← (A0)

Bytes: 1

Encoding:

0 0 0 0 0 0 1 1

RRC A
Function: Rotate Accumulator right through carry flag

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into
the carry flag; the original value of the carry flag moves into the bit 7 position. No other flags are affected.

Operation: RRC

(An) ← (An + 1) n=0-6

(A7) ← (C)

(C) ← (A0)

Bytes: 1

Encoding:

0 0 0 1 0 0 1 1

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

56 CR0115 (v2.0) March 13, 2008

SETB <bit>
Function: Set bit

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No
other flags are affected.

SETB bit
Operation: SETB

(bit) ← 1

Bytes: 2

Encoding:

1 1 0 1 0 0 1 0 bit address

SETB C
Operation: SETB

(C) ← 1

Bytes: 1

Encoding:

1 1 0 1 0 0 1 1

SJMP rel
Function: Short jump

Description: Program control branches unconditionally to the address indicated. The branch destination is computed by
adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice.
Therefore, the range of destinations allowed is from 128 bytes preceding this instruction to 127 bytes following
it.

Note: Under the above conditions the instruction following SJMP will be at 102h. Therefore, the displacement byte of the
instruction will be the relative offset (0123h – 0102h) = 21h . In other words, an SJMP with a displacement of 0FEh would be a
one-instruction infinite loop.
Operation: SJMP

(PC) ← (PC) + 2

(PC) ← (PC) + rel

Bytes: 2

Encoding:

1 0 0 0 0 0 0 0 relative address

SUBB A, <src-byte>
Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result in
the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C otherwise. (If
C was set before executing a SUBB instruction, this indicates that a borrow was needed for the previous step
in a multiple precision subtraction, so the carry is subtracted from the Accumulator along with the source
operand).

AC (Auxiliary Carry bit) is set if a borrow is needed for bit 3, and cleared otherwise. OV (Overflow flag) is set if
a borrow is needed into bit 6 but not into bit 7, or into bit 7 but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative
number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 57

SUBB A,Rn
Operation: SUBB

(A) ← (A) - (C) - (Rn)

Bytes: 1

Encoding:

1 0 0 1 1 r r r

SUBB A,direct
Operation: SUBB

(A) ← (A) - (C) - (direct)

Bytes: 2

Encoding:

1 0 0 1 0 1 0 1 direct address

SUBB A, @ Ri
Operation: SUBB

(A) ← (A) - (C) - ((Ri))

Bytes: 1

Encoding:

1 0 0 1 0 1 1 i

SUBB A, #data
Operation: SUBB

(A) ← (A) - (C) - #data

Bytes: 2

Encoding:

1 0 0 1 0 1 0 0 immediate data

SWAP A
Function: Swap nibbles within the Accumulator

Description: SWAP A interchanges the low and high-order nibbles (four-bit fields) of the Accumulator (bits 3-0 and bits 7-
4). The operation can also be thought of as a four-bit rotate instruction. No flags are affected.

Operation: SWAP

(A3-0) ↔ (A7-4)

Bytes: 1

Encoding:

1 1 0 0 0 1 0 0

XCH A, <byte>
Function: Exchange Accumulator with byte variable

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original
Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or
register-indirect addressing.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

58 CR0115 (v2.0) March 13, 2008

XCH A,Rn
Operation: XCH

(A) ↔ (Rn)

Bytes: 1

Encoding:

1 1 0 0 1 r r r

XCH A,direct
Operation: XCH

(A) ↔ (direct)

Bytes: 2

Encoding:

1 1 0 0 0 1 0 1 direct address

XCH A, @ Ri
Operation: XCH

(A) ↔ ((Ri))

Bytes: 1

Encoding:

1 1 0 0 0 1 1 i

XCHD A,@Ri
Function: Exchange digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0, generally representing a hexadecimal or
BCD digit), with that of the internal RAM location indirectly addressed by the specified register. The high-order
nibbles (bits 7-4) of each register are not affected. No flags are affected.

Operation: XCHD

(A3-0) ↔ ((Ri3-0))

Bytes: 1

Encoding:

1 1 0 1 0 1 1 i

XRL <dest-byte>, <src-byte>
Function: Logical Exclusive OR for byte variables

Description: XRL performs the bit wise logical Exclusive OR operation between the indicated variables, storing the results
in the destination. No flags are affected (except P (Parity bit), if <dest-byte> = A).

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the
source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct
address, the source can be either the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will be read from the output
data latch, not the input pins.

XRL A,Rn
Operation: XRL2

(A) ← (A) ∀ (Rn)

Bytes: 1

Encoding:

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 59

0 1 1 0 1 r r r

XRL A,direct
Operation: XRL

(A) ← (A) ∀ (direct)

Bytes: 2

Encoding:

0 1 1 0 0 1 0 1 direct address

XRL A, @ Ri
Operation: XRL

(A) ← (A) ∀ ((Ri))

Bytes: 1

Encoding:

0 1 1 0 0 1 1 i

XRL A, #data
Operation: XRL

(A) ← (A) ∀ #data

Bytes: 2

Encoding:

0 1 1 0 0 1 0 0 immediate data

XRL direct,A
Operation: XRL

(direct) ← (direct) ∀ (A)

Bytes: 2

Encoding:

0 1 1 0 0 0 1 0 direct address

XRL direct, #data
Operation: XRL

(direct) ← (direct) ∀ #data

Bytes: 3

Encoding:

0 1 1 0 0 0 1 1

direct address

immediate data

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

60 CR0115 (v2.0) March 13, 2008

Instruction Timing
With the exception of MUL and DIV, all instructions in the set take one or two instruction cycles to complete. A TSK51x
instruction cycle consists of 12 clock cycles. Each clock cycle forms a CPU cycle. Therefore, an instruction cycle consists of six
CPU states and two phases. Various events occur in each CPU cycle, depending on the type of instruction being executed.

Program Memory Timing
The execution of instruction N is performed during the fetch of instruction N+1.

Internal Program Memory Read Cycle
0ns 100ns 200ns 300ns 400ns 500ns 600ns

CLK
EA
ROMADDR
ROMRD

ROMDATAI

N N+1 N+2

(N) (N+1)

read sample

max. 1.0 * TCLK

read sample

max. 1*TCLKmax. 6*TCLK

Figure 14. Internal Program memory Read cycle

Note: TCLK - time period of CLK signal

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 read sample - point at which data is read from bus into the internal register.

External Program Memory Read Cycle

0ns 100ns 200ns 300ns 400ns 500ns 600ns

CLK
EA

PSRD

ROMDATAI

 MEMADDR

MEMDATAI

N N+1 N+2

N N+1 N+2

(N) (N+1) (N+2)

max. 3.0 * TCLK
max. 1.0 * TCLKmax. 4.0 * TCLK

read sample read sample

Figure 15. External Program memory Read cycle

Note: addrbus - externally latched address bus

 TCLK - time period of CLK signal

 N - address of current instruction to be executed

 N+1 - address of next instruction to be executed

 (N) - instruction fetched from address N

 read sample - point at which data is read from bus into the internal register.

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 61

Data Memory Timing

Internal Data Memory Read Cycle
0ns 100ns 200ns 300ns 400ns 500ns 600ns

CLK
ramaddr
ramwe
ramoe

ramdatai

ramdatao

Addr Addr

Data Data

max. 1.0 * TCLK

max. 3.0 * TCLK

read sample read sample

max. 2.0*^TCLK

Figure 16. Internal Data memory Read cycle

Note: TCLK - time period of CLK signal

 Addr - address of memory cell

 Data - data to be read from address Addr

 read sample - point at which data is read from bus into the internal register.

Internal Data Memory Write Cycle

0ns 100ns 200ns 300ns 400ns 500ns 600ns

CLK
ramaddr
ramwe
ramoe
ramdatai
ramdatao

Addr

Data

write sample

Figure 17. Internal Data memory Write cycle

Note: TCLK - time period of CLK signal

 Addr - address of memory cell

 Data - data to be written into address Addr

 write sample - point at which data is written from the bus into memory.

External Data Memory Read Cycle
0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns

CLK
EA

PSRD

MEMADDR

MEMRD

MEMWR

ADDRBUS

MEMDATAI

N DPTR N

N DPTR N

(N) Data (N)

max 6.0 * TCLK max 2.0 * TCLK

read sample

max 3.0 * TCLK
max 1.0 * TCLK

max 4.0 * TCLK max 8.0 * TCLK

Figure 18. External Data memory Read cycle

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

62 CR0115 (v2.0) March 13, 2008

Note: addrbus - externally latched address bus

 TCLK - time period of CLK signal

 N - address of current instruction to be executed

 N+1 - address of next instruction to be executed

 (N) - instruction fetched from address N

 DPTR - address of data loaded into Data Pointer

 Data - data to be read from address referenced by DPTR

 read sample - point at which data is read from bus into the internal register.

External Data Memory Write Cycle
0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns

CLK
EA

PSRD

MEMDATAO

MEMADDR

 MEMWR

MEMRD

MEMDATAI

Data

N DPTR N+1

(N) (N)
max 4.0 * TCLK
max 3.0 * TCLK

max 1.0 * TCLK

write sample

Figure 19. External Data memory Write cycle

Note: addrbus - externally latched address bus

 TCLK - time period of CLK signal

 N - address of current instruction to be executed

 N+1 - address of next instruction to be executed

 (N) - instruction fetched from address N

 DPTR - address of data loaded into Data Pointer

 Data - data to be written into address referenced by DPTR

 write sample - point at which data is written from the bus into memory.

External Special Function Registers Timing

External Special Function Register Read Cycle
0ns 100ns 200ns 300ns 400ns 500ns 600ns

CLK
SFRADDR

SFRWR

SFRRD

SFRDATAI

SFRDATAO

Addr Addr

Data Data

max. 1.0 * TCLK
max. 3.0 * TCLK

read sample read sample

max. 2.0*^TCLK

Figure 20. External special function register Read cycle

Legacy documentation
refer to the Altium Wiki for current information

TSK51x MCU

CR0115 (v2.0) March 13, 2008 63

Note: TCLK - time period of CLK signal

 Addr - address of special function register

 Data - data to be read from address Addr

 read sample - point at which data is read from bus into the internal register

External Special Function Register Write Cycle
0ns 100ns 200ns 300ns 400ns 500ns 600ns

CLK
SFRADDR

SFRWR

SFRRD

SFRDATAI

SFRDATAO

Addr

Data

write sample

Figure 21. External special function registers Write cycle

Note: TCLK - time period of CLK signal

 Addr - address of special function register

 Data - data to be written into address Addr

 write sample - point at which data is written from the bus into register.

Revision History

Date Version No. Revision

22-Jan-2004 1.0 New product release

22-Oct-2004 1.1 Modifications to Timer/Counter information, polarity updates for Interrupt and Timer signals in
main Pinout table. Changes to On-Chip Debugging, including addition of the Nexus Debugger
panel.

08-Feb-2005 1.2 Modifications to debug panel information in On-Chip Debugging section.

09-May-2005 1.3 Updated for SP4

12-Dec-2005 1.4 Path references updated for Altium Designer 6

13-Mar-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:

Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

	Features
	Available Devices
	Architectural Overview
	Symbols
	Pin Description
	Memory Organization
	Program Memory
	Data Memory
	External Data Memory
	Internal Data Memory

	 Special Function Registers
	Accumulator (ACC)
	B register
	External Data memory Paging Register (XP)
	Program Status Word Register (PSW)
	Stack Pointer Register (SP)
	Data Pointer Register (DPL and DPH)
	Internal Program Memory Sizing Register (ROMSIZE)
	Power Control Register (PCON)

	Hardware Description
	Core Engine
	Block Diagram
	Ports
	Timers / Counters
	Timers 0 and 1
	Timer / Counter Mode Control Register(TMOD)
	Timer / Counter Control Register(TCON)
	Timing Modes
	Mode 0
	Mode 1
	Mode 2
	Mode 3

	Serial Interface
	Serial Port 0
	Mode 0
	Mode 1
	Mode 2
	Mode 3

	Multiprocessor Communication
	Serial Port Control Register (SCON)
	Generating Variable Baud Rate in Modes 1 and 3

	Reset
	Hardware Reset (RST)
	Reset Values

	Interrupts
	External Interrupts
	Timer 0 and Timer 1 Interrupts
	Serial Port Interrupt
	Interrupt Enable Register (IE)
	Interrupt Priority Register (IP)
	Interrupt Priority Level Structure.
	Interrupt Handling

	 On-Chip Debugging
	Adding Debug Functionality to the Standard Core
	Accessing the Debug Environment

	 Instruction Set
	Instruction Definitions
	 Instruction Set - Functional Groupings
	Hexadecimal Ordered Instructions

	 Instruction Set – Detailed Reference
	ACALL addr11
	ADD A, <src-byte>
	ADD A, Rn
	ADD A, direct
	ADD A, @Ri
	ADD A, #data

	ADDC A, < src-byte>
	ADDC A, Rn
	 ADDC A, direct
	ADDC A, @Ri
	ADDC A, #data

	AJMP addr11
	ANL <dest-byte>, <src-byte>
	ANL A,Rn
	ANL A,direct
	ANL A, @Ri
	ANL A, #data
	ANL direct,A
	ANL direct, #data

	ANL C, <src-bit>
	ANL C,bit
	ANL C,/bit

	CJNE <dest-byte >, < src-byte >, rel
	CJNE A,direct,rel
	 CJNE A, #data,rel
	CJNE Rn, #data, rel
	CJNE @Ri, #data, rel

	 CLR A
	CLR bit
	CLR C

	CPL A
	CPL bit
	CPL C

	DA A
	DEC byte
	DEC A
	DEC Rn
	DEC direct
	DEC @Ri

	DIV AB
	 DJNZ <byte>, <rel-addr>
	DJNZ Rn,rel
	DJNZ direct,rel

	INC <byte>
	INC A
	INC Rn
	INC direct
	INC @Ri

	INC DPTR
	JB bit, rel
	JBC bit,rel
	JC rel
	JMP @A + DPTR
	JNB bit,rel
	JNC rel
	JNZ rel
	 JZ rel
	LCALL addr16
	LJMP addr16
	MOV <dest-byte>, <src-byte>
	MOV A,Rn
	MOV A,direct
	MOV A,@Ri
	MOV A, #data
	MOV Rn,A
	MOV Rn,direct
	MOV Rn, #data
	MOV direct,A
	MOV direct,Rn
	MOV direct,direct
	MOV direct, @ Ri
	MOV direct, #data
	MOV @ Ri,A
	MOV @ Ri,direct
	MOV @ Ri,#data

	MOV <dest-bit>, <src-bit>
	MOV C,bit
	MOV bit,C

	MOV DPTR, #data16
	MOVC A, @A + <base-reg>
	MOVC A, @A + DPTR
	MOVC A, @A + PC

	 MOVX <dest-byte>, <src-byte>
	MOVX A,@Ri
	MOVX A,@DPTR
	MOVX @Ri,A
	MOVX @DPTR,A

	MUL AB
	NOP
	ORL <dest-byte>, <src-byte>
	ORL A,Rn
	ORL A,direct
	ORL A,@Ri
	ORL A,#data
	ORL direct,A
	ORL direct, #data

	ORL C, <src-bit>
	ORL C,bit
	ORL C,/bit

	POP direct
	PUSH direct
	RET
	RETI
	RL A
	RLC A
	RR A
	RRC A
	SETB <bit>
	SETB bit
	SETB C

	SJMP rel
	SUBB A, <src-byte>
	SUBB A,Rn
	SUBB A,direct
	SUBB A, @ Ri
	SUBB A, #data

	SWAP A
	XCH A, <byte>
	 XCH A,Rn
	XCH A,direct
	XCH A, @ Ri

	XCHD A,@Ri
	XRL <dest-byte>, <src-byte>
	XRL A,Rn
	XRL A,direct
	XRL A, @ Ri
	XRL A, #data
	XRL direct,A
	XRL direct, #data

	 Instruction Timing
	Program Memory Timing
	Internal Program Memory Read Cycle
	External Program Memory Read Cycle

	Data Memory Timing
	Internal Data Memory Read Cycle
	Internal Data Memory Write Cycle
	External Data Memory Read Cycle
	External Data Memory Write Cycle

	External Special Function Registers Timing
	External Special Function Register Read Cycle
	External Special Function Register Write Cycle

	Revision History

