
Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Summary
Core Reference
CR0114 (v2.0) March 13, 2008

The TSK165x is a fully functional, 8-bit controller that employs RISC architecture with
a streamlined set of single word instructions. This core reference includes
architectural and hardware descriptions, instruction sets and on-chip debugging
functionality for the TSK165x family.

The TSK165x is instruction set compatible with the PIC16C5X family. All instructions are single cycle, except for program
branches which take two cycles.
Important Notice: Supply of this soft core under the terms and conditions of the Altium End-User License Agreement does not
convey nor imply any patent rights to the supplied technologies. Users are cautioned that a license may be required for any use
covered by such patent rights.

Features
• RISC Control Unit

− Instruction set – comprising all single-word instructions (31 in total)

− 12-bit instruction decoder

− Single cycle instruction execution (except double-cycle branch instructions)

− 7 dedicated special function registers (SFRs)

− 8-level deep hardware stack

− Direct, indirect and relative addressing modes for data and instructions

• Arithmetic Logic Unit

− 8 bit arithmetic operations

− 8 bit logical operations

− Boolean manipulations

• Device Reset Timer

• I/O ports

− TSK165A, TSK165B : 3, 8-bit I/O ports

− TSK165C : 6, 8-bit I/O ports

• Data Memory interface

− TSK165A : can address up to 16+9 bytes of Read/Write Data memory space

− TSK165B, TSK165C : can address up to 64+9 bytes of Read/Write Data memory space

• Program Memory interface

− TSK165A : can address up to 512 bytes of Program memory Space

− TSK165B, TSK165C : can address up to 2KB of Program memory Space

Performance
The high performance of the TSK165x can be attributed to a number of architectural features commonly found in RISC
microprocessors. To begin with, the TSK165x uses a Harvard architecture in which program and data are accessed on separate
buses. This improves bandwidth over the more traditional von Neumann architecture, where program and data are fetched on
the same bus. Separating Program and Data memory allows instructions to be sized at 12 bits, rather than the 8-bits used for
data.

12-bits wide instruction opcodes make it possible to have all single word instructions. A 12-bit wide Program memory access
bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps the fetch and execution of instructions.
Consequently, all instructions (31 in total) execute in a single cycle except for program branches.

CR0114 (v2.0) March 13, 2008 1

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Available Devices
Three variants of the standard microcontroller core are available – the TSK165A, TSK165B and TSK165C respectively. Table 1
summarizes the key differences between the three.

Table 1. TSK165x standard core variants

Feature TSK165A TSK165B TSK165C

Addressable Program memory 512*12 2K*12

Data memory 16 + 9 bytes 64 + 9 bytes

Program Counter width 9 bits 11 bits

Stack width 9 bits 11 bits

Same features as
the TSK165B,
plus three
additional 8-bit
ports.

In addition, a corresponding debug-enabled (OCD) version of each variant is also available (TSK165A_D, TSK165B_D and
TSK165C_D respectively).
Note: Throughout this document, differences between core variants are listed in terms of the standard core devices
(TSK165A/B/C). Unless specified otherwise, the feature/description applies to the debug-enabled version of the variant
(TSK165A_D/B_D/C_D) in exactly the same way.
All devices in the TSK165x family can be found in the FPGA Processors integrated library (FPGA Processors.IntLib),
located in the \Library\Fpga folder of the installation.

2 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Architectural Overview

Symbols

Figure 1. TSK165x family symbols

CR0114 (v2.0) March 13, 2008 3

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Pin Description
The pinout of the TSK165x has not been fixed to any specific device I/O - allowing flexibility with user application. The TSK165x
contains only unidirectional pins (inputs or outputs).

Table 2. TSK165x Pin description

Name Type Polarity/Bus size Description

Control Signals
CLK I Rise External clock used for internal clock counters and all other

synchronous circuitry
RST I High External system reset. A high on this pin while the external system

clock (CLK) is running resets the device into the user reset state
Powerup I High Power up reset. A low on this pin while the external system clock

(CLK) is running resets the device into the power up reset state
External Watchdog Timer Interface Signals

WDTO I High Overflow signal from external Watchdog Timer. When a high is
received on this pin, the microcontroller is reset.

WDTC O High A high on this pin, provided by the CLRWDT instruction, sends a
clear signal to the external Watchdog Timer.

Program Memory Interface Signals
ROMDATAO1 O 12 Memory data bus output
ROMDATAI I 12 Memory data bus input
ROMADDR O 112 Memory address bus
ROMWE1 O High Memory write enable

I/O Ports Interface Signals

RAI
RAO
TRISA

I
O
O

8
8
8

Port Register A
Port A configured as input
Port A configured as output
Output driver control register for Port A

RBI
RBO
TRISB

I
O
O

8
8
8

Port Register B
Port B configured as input
Port B configured as output
Output driver control register for Port B

RCI
RCO
TRISC

I
O
O

8
8
8

Port Register C
Port C configured as input
Port C configured as output
Output driver control register for Port C

RDI
RDO
TRISD

I
O
O

8
8
8

Port Register D3

Port D configured as input
Port D configured as output
Output driver control register for Port D

REI
REO
TRISE

I
O
O

8
8
8

Port Register E3

Port E configured as input
Port E configured as output
Output driver control register for Port E

1 TSK165A_D, TSK165B_D and TSK165C_D only
2 Value shown is for the TSK165B and TSK165C. For the TSK165A, the address will be 9 bits.
3 TSK165C only

4 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Name Type Polarity/Bus size Description

RFI
RFO
TRISF

I
O
O

8
8
8

Port Register F3

Port F configured as input
Port F configured as output
Output driver control register for Port F

Memory Organization
The TSK165x microcontroller incorporates the Harvard architecture with separate program (code) and data spaces. The two
memory areas are organized as follows:

• Program memory is organized into pages, each 512 bytes in size. For the various members in the TSK165x family, the
number of pages are as follows:

− TSK165A (512 bytes) – 1 page

− TSK165B, TSK165C (2KB) – 4 pages

• For the TSK165B and TSK165C, the pages are accessed using two page select bits of the STATUS register.

• Data memory utilizes a banking scheme. Banks of Data memory are accessed using the File Selection Register (FSR). Note
that banking only applies in the case of the TSK165B and TSK165C, where the Data memory space is larger. In the
TSK165A, the Data memory space is the equivalent of a single bank in size.

Program Memory
In the TSK165x, the size of the Program Counter (PC) depends on the particular core variant being used.

TSK165A - 9-bit Program Counter capable of addressing 512∗12 Program memory space (Figure 2).

TSK165B, TSK165C - 11-bit Program Counter capable of addressing 2K∗12 Program memory space (Figure 2).

Program memory is read whenever the CPU performs a fetching instruction. Internally, an instruction is fetched from Program
memory during every instruction cycle and latched in the fetch register.

After a reset has been issued, the CPU starts program execution from location 000h.

 1FFh

TSK165A

000h Reset vector

200h

400h

600h

7FFh

TSK165B, TSK165C

000h Reset vector

Figure 2. Program memory organization

When using Program memory, a separate block is placed in the design – external to the component symbol for the core. With a
standard core variant (TSK165A/B/C), a block of ROM is used, the size of which depends on the requirements of the design.
With an OCD variant, because this version of the core allows you to write to Program memory space, RAM must be used
instead, as shown in the example of Figure 3.

CR0114 (v2.0) March 13, 2008 5

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Figure 3. Using RAM for TSK165A_D Program memory

RAM and ROM blocks can be found in the FPGA Memories integrated library (\Library\Fpga\FPGA Memories.IntLib).

Program Memory Timing
The execution of instruction N is performed during the fetch of instruction N+1.

Program Memory Read Cycle

Figure 4. Program memory read cycle

Note: TCLK - time period of CLK signal

 N - address of current instruction to be executed

 (N) - instruction fetched from address N

 N+1 - address of next instruction to be executed

 read sample - point at which data is read from the bus into the internal fetch register.

Data Memory
Data memory is composed of registers, or bytes of RAM. Therefore, Data memory for a device is specified by its register file.
The register file is divided into two functional groups: General Purpose Registers and Special Function Registers.

• The General Purpose Registers (GPRs) are used to store data and control information for use with specified instructions.

• The Special Function Registers (SFRs) are used by the CPU and its peripheral modules to control the operation of the
device. These registers include the STATUS Register, the I/O registers and the File Selection Register (FSR). In addition,
various special purpose registers are used to control, for example, the I/O port configuration.

The variants of the TSK165x differ in the size of addressable Data memory space they offer:

• In the TSK165A, a 16 byte RAM block is used and the overall Data memory space is comprised of a single bank only (Bank
0). Addressable GPR space is 16 + 9 bytes. The memory space assigned to the SFRs is 7 bytes (see Figure 5)

• In the TSK165B, a 64 byte RAM block is used and the overall Data memory space is comprised of four banks (Bank 0 –
Bank 3). Addressable GPR space is 64 + 9 bytes. The memory space assigned to the SFRs is 7 bytes (see Figure 5).

CLK
ROMADDR

ROMDATAI

N N+1 N+2

(N)

(N+1) (N+2)

read sample read sample

max 2*TCLK max 2*TCLK

max 2*TCLK read sample

6 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

INDF

GPR

PCL

STATUS

FSR

PORTA

PORTB

PORTC

00h

01h

02h

03h

04h

05h

06h

07h

08h

0Fh

10h

1F

20h

2Fh
30h

3F

4Fh

40h

6Fh

60h

50h

5F

70h

7F

Addresses map bank to
addresses in Bank 0

00 01 10 11FSR<6:5>
File Address

Bank 0 Bank 1 Bank 2 Bank 3

GPR

GPR

Figure 5. Data memory organization (TSK165A, TSK165B)

• In the TSK165C, a 64 byte RAM block is used and the overall Data memory space is comprised of four banks (Bank 0 –
Bank 3). Addressable GPR space is 64 + 6 bytes. The memory space assigned to the SFRs is 10 bytes (see Figure 6).

INDF
GPR
PCL

STATUS
FSR

PORTA
PORTB
PORTC

00h
01h
02h
03h
04h
05h
06h
07h
08h

0Fh
10h

1F

20h

2Fh
30h

3F

4Fh

40h

6Fh

60h

50h

5F

70h

7F

Addresses map bank to
addresses in Bank 0

00 01 10 11FSR<6:5>
File Address

Bank 0 Bank 1 Bank 2 Bank 3

PORTE

GPR

PORTF

PORTD
09h
0Ah
0Bh

GPR

Figure 6. Data memory organization (TSK165C)

As the Data memory space in the TSK165A is not greater than 32 bytes, a banking scheme (selection of banks within the
memory organization) is not required and therefore not implemented. In the TSK165B and TSK165C – where the Data memory
space is greater – such a banking scheme is implemented through the use of two bank selection bits in the File Select register
(FSR). As shown in Figure 5 and Figure 6, these two bits (FSR 6:5) select the banks of memory as follows:
• 00 – Bank 0
• 01 – Bank 1
• 10 – Bank 2

CR0114 (v2.0) March 13, 2008 7

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

• 11 – Bank 3.

With respect to Banks 1-3, the first 16 bytes map exactly to the first 16 bytes of Bank 0 (the same addresses are seen in these
first 16 bytes).

The Data Bus Interface services Data memory when the ramwe signal is active. The TSK165x reads from / writes to Data
memory when the CPU executes any of the byte or bit oriented instructions.

As the TSK165x has a dedicated block of Data RAM, the Data memory interface is not exposed to the user through the
schematic symbol. As such, the size of the Data memory cannot be upgraded. If, for example, you have used the TSK165A in
your design and find that you need more than the 16 +9 bytes of GPR-assigned Data memory space, you would need to either
use one of the other variants in the TSK165x family (e.g. the TSK165B, with 64 + 9 bytes) or use a different microcontroller
altogether that offered increased Data memory space.

Data Memory Timing
Data Memory Read Cycle

Figure 7. Data memory read cycle

Note: TCLK - time period of CLK signal

 Addrn - address of memory cell

 Data(Addrn) - data read from address Addrn
 read sample - point at which data is read from bus into the internal register.

Data Memory Write Cycle

Figure 8. Data memory write cycle

Note: TCLK - time period of CLK signal

 Addrn - address of Data memory cell

 Datan - data to be written into address Addrn

 write sample - point at which data is written from the bus into memory.

ramaddr

ramwe
ramdatao

ramdatai

Addr1 Addr2 Addr3

Data(Addr1) Data(Addr2) Data(Addr3)

read sample read sample read sample

max 1/2*TCLK max 1/2*TCLK max 1/2*TCLK

CLK

CLK
ramaddr

ramwe

ramdatao

ramdatai

Addr1 Addr2 Addr3

Data1 Data2 Data3

8 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Data Memory Read and Write Cycle

Figure 9. Data memory read and write cycle

Note: TCLK - time period of CLK signal

 Addrn - address of Data memory cell

 Datan - data to be written into address Addrn

 Data(Addrn) - data read from address Addrn

 read sample - point at which data is read from the bus into the internal register

 write sample - point at which data is written from the bus into memory.

Special Function Registers
A map of the Special Function Registers is shown in Table 3. The Special Function Registers are registers used by the CPU
and peripheral functions to control the operation of the device.

Table 3. Special Function Registers summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

N/A TRIS I/O control register (TRISA, TRISB, TRISC, TRISD4, TRISE4, TRISF4)

N/A W Work Register

00h INDF Uses contents of FSR to address Data memory

02h PCL Low order 8 bits of PC

03h STATUS5 PA2 PA1 PA0 TO - Z DC C

04h FSR Indirect Data memory address pointer

05h PORTA RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0

06h PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

07h PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

08h PORTD4 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

09h PORTE4 RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0

0Ah PORTF4 RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0

4 TSK165C only
5 In the TSK165A, bits 7:5 of the STATUS register are not used . In the TSK165B and TSK165C, bit 7 is not used.

CLK
ramaddr

ramwe

ramdatao

ramdatai

instruction

Addr1 Addr2 Addr3

Data2 Data3

MOVF f1,W INCF f2,F MOVWF f3

max 1/2*TCLK max 1/2*TCLK

read_sample0 read_sample1

CR0114 (v2.0) March 13, 2008 9

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Hardware Description
The structure of the TSK165x consists of:
• Control Unit
• Arithmetic Logic Unit
• Address Control Unit
• Ports unit
• Device Reset Timer
• Data memory RAM

Block Diagram
Figure 10 shows the hardware block diagram for the TSK165x.

statusouta b wout

RST
POWERUP

PORTS

ADDRESS_CONTROL ramdatai

ROMADDR

ramaddr
ramwe

RAI
RBI
RCI

PC

CONTROL_UNIT
ALU

ramdatao

W
STATUS

STACK1

STACKN

FSR

PORTA
PORTB
PORTC

TRISA

TRISC
TRISB

RAO
RBO
RCO

TRISA

TRISC
TRISB

INSTRUCTION

FETCH

ROMDATAI

drtclk

CLK

RAM

DEVICE RESET TIMER

. . .

PORTD
PORTE
PORTF

TRISD
TRISE
TRISF

TRISD

TRISF
TRISE

RDO
REO
RFO

RDI
REI
RFI

ROMDATAO

ROMWE

Figure 10. TSK165x Block diagram

Note that in the block diagram in Figure 10:
• The size of the RAM block depends on the TSK165x variant

− 16 bytes for TSK165A
− 64 bytes for TSK165B and TSK165C

• With respect to the Stack, N represents the depth of the stack
− N=2 for TSK165A
− N=8 for TSK165B and TSK165C

• The interface signals and registers for I/O ports D, E and F are available with the TSK165C only
• The Program memory interface signals ROMDATAO and ROMWE are available in the debug-enabled version of each core

variant only.

10 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Control Processor Unit
The Control Processor Unit (CPU) controls the fetching of instructions from Program memory. A fetched instruction is latched
into the Instruction Register during the first clock cycle of the instruction cycle. This instruction is then decoded and executed
during the remaining three clock cycles of the instruction cycle.

Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU) is 8-bits wide and is capable of addition, subtraction, shift and logic operations. Unless
otherwise mentioned, arithmetic operations are two’s complement in nature. In two-operand instructions, typically one operand
is the W (working) register. The other operand is either a file register or an immediate constant. The following sections describe
the Arithmetic Logic Unit registers – W and STATUS - in greater detail.

Working Register (W))
The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

STATUS Register (STATUS))
This register contains the arithmetic status of the ALU, the RESET status and the page preselect bits for Program memories
larger than 512 bytes.

Table 4. The STATUS register flags

MSB LSB

PA2 PA1 PA0 TO - Z DC C

Table 5. The STATUS register bit functions

Bit Symbol Function

7 PA2 Program memory page preselect bit 2

6 PA1 Program memory page preselect bit 1

5 PA0 Program memory page preselect bit 0

4 TO Time-out bit

3 - Not used

2 Z Zero bit

1 DC Digit carry bit

0 C Carry bit

Note: In the TSK165A, bits 7:5 of the STATUS register are not used.

In the TSK165B and TSK165C, bit 7 is not used.

Program memory pages are selected based on the status of the page preselect bits. In the TSK165B and TSK165C, 2 bits are
used to select the possible four pages (2K of memory space), as shown in Table 6.

Table 6. Program memory page location in the TSK165B and TSK165C

PA1/PA0 Page select Location

00 Page 0 (000h – 1FFh)

01 Page 1 (200h – 3FFh)

10 Page 2 (400h – 5FFh)

11 Page 3 (600h – 7FFh)

CR0114 (v2.0) March 13, 2008 11

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Address Control Unit
The Address Control Unit interfaces to both Program and Data memory spaces and determines the source of an ALU operand.
The unit consists of a Program Counter (PC), a Stack register (2-levels deep in the TSK165A; 8-levels deep in the TSK165B
and TSK165C) and a File Select register (FSR).

Program Counter (PC))
As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be
executed. The PC is incremented by one at the start of the subsequent instruction cycle, unless an instruction changes the PC.

The low eight bits of the PC are mapped into the Data memory space as the PCL register.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. For the TSK165B and TSK165C (PC =
11 bits), the upper bits are provided by the page preselect bits in the STATUS register (PA1:PA0).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the
instruction word. Bit 8 is always cleared and, in the case of the TSK165B and TSK165C, the upper bits of the PC are again
provided by the page preselect bits.

PCL

Instruction Word

10 9 8 0
PC

STATUS

pa1:pa0 for TSK165B and TSK165C

PCL

Instruction Word

10 9 8 0
PC

STATUS

pa1:pa0 for TSK165B and TSK165C

7

Reset to ‘0’

GOTO instruction

CALL or Modify PCL instruction

Figure 11. Loading of PC branch instruction.

Stack
A hardware push/pop stack is provided, whose width is the same as that of the Program Counter:
• TSK165A: 9-bit stack, 8 levels deep
• TSK165B, TSK165C: 11-bit stack, 8 levels deep

For all variants in the family:
• A CALL instruction will push the current value at each stack level down into the next stack level (e.g. stack1 into stack2,

stack2 into stack3 and so on) and then push the current Program Counter value into stack1. Up to eight sequential CALL
instructions can be executed, corresponding to the storage of the eight most recent return addresses.

• A RETLW instruction will pop the contents of stack1 into the Program Counter and then copy the contents in each level of
the stack, up to the next level (e.g. stack8 into stack7, stack 7 into stack6 and so on). If more than eight sequential RETLW
instructions are executed, the stack will be filled with the address previously stored in stack8.

For the RETLW instruction, the PC is loaded with the top of stack (tos) contents.

12 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

File Select Register (FSR))
This register is used for indirect data addressing. Addressing the INDF register actually addresses the Data memory whose
address is contained in the FSR register. For example:
• Location 05h of Data memory contains the value 10h
• Location 06h of Data memory contains the value 0Ah
• Load the value 05h into the FSR register
• A read of the INDF register will return the value of 10h
• Increment the value of the FSR register by one (FSR=06h)
• A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR=0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (NOP).

The bits 4:0 of the FSR are used to select Data memory addresses in the range 00h to 1Fh (32 bytes).

In the case of the TSK165B and TSK165C, where the Data memory space is larger than 32 bytes, bits 6:5 of the FSR are the
bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3). Each
bank addresses a further 32 bytes of Data memory space, although the top 16 bytes are identical to those in Bank 0. (Note that
in the TSK165A, as the Data memory space is 32 bytes, no banking is required and so the upper bits of the FSR are not used).
Figure 12 shows the direct/indirect addressing for the TSK165A, while Figure 13 shows that for the TSK165B and TSK165C.

00h

0Fh

10h

 1Fh

4 0 4 0 (FSR)

Direct Addressing Indirect Addressing
(Opcode)

Figure 12. Direct/indirect addressing (TSK165A)

Addresses map back to
addresses in Bank 0

00h

0Fh

10h

1Fh 3Fh 5Fh 7Fh

00 01 10 11

6 5 4 0 4 0 5 6 (FSR)

(FSR)

Direct Addressing Indirect Addressing

(Opcode)

Figure 13. Direct/indirect addressing (TSK165B and TSK165C)

CR0114 (v2.0) March 13, 2008 13

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Ports Unit
The Ports Unit consists of port registers and TRIS registers. Read instructions always read the input ports (RAI, RBI and RCI).
Write instructions always save the values in the port registers and drive data out through the output ports (RAO, RBO and
RCO). The TRIS registers are output control registers.

Port Registers (Port A, Port B, Port C, Port D, Port E, Port F)
The number of port registers available depends on the particular core variant that is used:

TSK165A, TSK165B : three 8-bit port registers – Ports A, B and C

TSK165C : six 8-bit port registers – Ports A, B, C, D, E and F.

Each bit in each port can be configured, under program control, to be either an input or output. To simplify using these bi-
directional ports, the schematic symbol includes a bus pin for each possible port configuration, allowing them to be wired
independently (as shown in the example of Figure 14). Note that as the input mode is instantiated as a pin, any unused input
ports must be tied appropriately. The simplest way to do this is to wire the input pin to the corresponding output pin.

Directional control is achieved through the corresponding TRIS registers for each port.

Figure 14. Port usage in a TSK165x microcontroller

TRIS Registers (TRISA, TRISB, TRISC, TRISD, TRISE, TRISF)
Each available port register in the device has a corresponding output driver control register:

TSK165A, TSK165B : TRISA – TRISC

TSK165C : TRISA – TRISF.

The output driver control registers are loaded with the contents of the W register by executing the TRIS f instruction. A ‘1’ from a
TRIS register bit disables the corresponding output buffer and drive in hi-impedance mode. A ‘0’ from a TRIS register bit drives
the contents output port (RAO, RBO, etc) on selected pins, enabling the output buffer.

Device Reset Timer
The Device Reset Timer is an 8-bit counter, incremented every falling edge of drtclk. This timer is for keeping the device in reset
as long as the counter does not overflow. The source clock of this timer must be available to wake up and reset the system.
This means that the drtclk clock must be running all the time. The source for that clock is a global clock and, in fact, the drtclk
input is internally connected to the external system clock (CLK) input. The time-out on reset therefore depends on the frequency
of CLK.
The DRT starts counting after any reset condition occurs.

Clock Domains
The TSK165x is synchronous and has the following clock domains:
• External system clock (CLK) for all registers of the microcontroller unit.
• Clock input for the Device Reset Timer counter (drtclk)

Note that drtclk is internally connected to CLK.

14 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

TSK165x

Device Reset Counter drtclk

CLK

Figure 15. Clock domains

Resetting the Microcontroller
The TSK165x may be reset in one of the following ways:
• Hardware reset (RST)
• Reset on FPGA Initialization (POWERUP)
• Reset issued from an external Watchdog Timer peripheral (off-core)

Hardware Reset (RST)
This reset will occur if RST goes high. In this case, only the TRIS and PC registers, as well as the three high bits of the STATUS
register are changed in accordance with their reset conditions. All other registers remain unchanged (see section Reset
Conditions).

Figure 16. Reset timing on external reset

Note: TCLK - time period of ‘CLK’ signal

 CLK - clock oscillator input

 Internal Reset - internal signal generated based on an external reset condition

 POWERUP - external reset input (Power On)

RST - external reset input

Reset on FPGA Initialization (POWERUP)
This reset will occur whenever the physical FPGA device is powered up – either through download of a valid programming file or
through the use of the POWERUP input (being taken high).

After the FPGA device has completed its initialization sequence, the processor will be held in the reset state for 256 cycles of
the external system clock (CLK). This is shown in Figure 17 by the Internal Reset signal being held active (High). After this time,
the processor will enter the normal 'Running' state, unless an additional external reset condition prevents it from doing so (e.g.
POWERUP active, RST active, reset from an off-core Watchdog peripheral device).

Figure 17. Reset timing on FPGA initialization.

Note: TCLK - time period of ‘CLK’ signal

 CLK - clock oscillator input

CLK
POWERUP

RST

Internal Reset
256*TCLK

POWERUP
RST

Internal Reset

256*TCLK

CR0114 (v2.0) March 13, 2008 15

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

 Internal Reset - internal signal generated based on an external reset condition

 POWERUP - external reset input (Power On)

 RST - external reset input.
Note: All registers will be in an unknown state (with the exception of the TRIS and PC registers and the five high bits of the
STATUS register (see section Reset Conditions).

External Watchdog Timer Reset
This reset is produced by a Watchdog Timer (WDT) device. This device is a peripheral, placed externally to the TSK165x.

When the Watchdog Timer exceeds a defined count limit, an overflow signal is sent to the TSK165x, through the WDTO pin and
the microcontroller is reset. The TO bit (STATUS<4>) is cleared upon reset.

The CLRWDT instruction is used to provide a clear signal to the Watchdog Timer, through the WDTC pin. The pin is taken high
for a single clock cycle. During normal operation, this signal will be sent at regular intervals to prevent the Watchdog Timer from
timing out and generating a device reset.

Reset Conditions
Table 7. Reset conditions for PCL and STATUS registers

Condition PCL
Addr: 02h

STATUS
Addr: 03h

POWERUP 0000 0000 0001 -xxx

RST reset (normal operation) 0000 0000 000u -uuu

WDT reset (normal operation) 0000 0000 0000 -uuu

Legend: u = unchanged, x = unknown, - = not implemented (read as '0').

Table 8. Reset conditions for all registers

Register Address POWERUP RST or WDT Reset

W N/A xxxx xxxx uuuu uuuu

TRIS N/A 1111 1111 1111 1111

INDF 00h xxxx xxxx uuuu uuuu

PCL 02h 0000 0000 0000 0000

STATUS 03h 0001 -xxx 000q -uuu

FSR 04h 1xxx xxxx 1uuu uuuu

PORTA 05h xxxx xxxx uuuu uuuu

PORTB 06h xxxx xxxx uuuu uuuu

PORTC 07h xxxx xxxx uuuu uuuu

PORTD6 08h xxxx xxxx uuuu uuuu

PORTE6 09h xxxx xxxx uuuu uuuu

PORTF6 0Ah xxxx xxxx uuuu uuuu

Legend: u = unchanged, x = unknown, - = not implemented (read as '0'), q = multiple values (see Table 7 for possible values).

6 TSK165C only

16 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Table 9. TO status after reset

TO Reset was caused by

1 Power-up (POWERUP)

u RST reset (normal operation)

0 WDT reset (normal operation)

Legend: u = unchanged.

Table 10. Events affecting TO status bit

Event TO

Power up 1

External WDT Time-out 0

CLRWDT instruction 1

Legend: u = unchanged.

CR0114 (v2.0) March 13, 2008 17

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

On-Chip Debugging
The debug-enabled versions of each of the core variants (TSK165A_D, TSK165B_D, TSK165C_D) provide the following set of
additional functional features that facilitate real-time debugging of the microcontroller:
• Reset, Go, Halt processor control
• Single or multi-step debugging
• Read-write access for internal processor registers including SFRs and PC
• Read-write access for program memory and data memory
• Unlimited software breakpoints
• User can specify whether the peripheral’s clocks are stopped when processor enters debug mode.

Adding Debug Functionality to a Standard Core Variant
For the TSK165A_D, TSK165B_D and TSK165C_D, the debug functionality is provided through the use of an On-Chip Debug
System unit (OCDS). The simplified block diagram of Figure 18 shows the connection between this unit and the standard
TSK165x core variant.

TCK

TMS

TDI

TDO

Standard
JTAG

interface

MCU
symbol

pins

TSK165x_D OCD Microcontroller

Microcontroller
Core

(TSK165x)

OCDS Interface

OCDS Control
and

Debug Port

Figure 18. Simplified TSK165x_D block diagram

The host computer is connected to the target core using the IEEE 1149.1 (JTAG) standard interface. This is the physical
interface, providing connection to physical pins of the FPGA device in which the core has been embedded.

The Nexus 5001 standard is used as the protocol for communications between the host and all devices that are debug-enabled
with respect to this protocol. This includes all OCD-version microcontrollers, as well as other Nexus-compliant devices such as
frequency generators, logic analyzers, counters, etc.
All such devices are connected in a chain – the Soft Devices chain – which is determined when the design has been
implemented within the target FPGA device and presents in the Devices view (Figure 19). It is not a physical chain, in the sense
that you can see no external wiring – the connections required between the Nexus-enabled devices are made internal to the
FPGA itself.

Figure 19. Nexus-enabled microcontrollers appearing in the Soft Devices chain

18 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

For microcontrollers such as the TSK165A_D, TSK165B_D and TSK165C_D, the Nexus protocol enables you to debug the core
through communication with the OCDS Unit.

Accessing the Debug Environment
Debugging of the embedded code within an OCD-version microcontroller is carried out by starting a debug session. Prior to
starting the session, you must ensure that the design, including one or more OCD-version microcontrollers and their respective
embedded code, has been downloaded to the target physical FPGA device.
To start a debug session for the embedded code of a specific microcontroller in the design, simply right-click on the icon for that
microcontroller, in the Soft Devices region of the view, and choose the Debug command from the pop-up menu that appears.
Alternatively, click on the icon for the microcontroller (to focus it) and choose Processors » Pn » Debug from the main menus,
where n corresponds to the number for the processor in the Soft Devices chain.
The embedded project for the software running in the processor will initially be recompiled and the debug session will
commence. The relevant source code document (either Assembly or C) will be opened and the current execution point will be
set to the first line of executable code (see Figure 20).
Note: You can have multiple debug sessions running simultaneously – one per embedded software project associated with a
microcontroller in the Soft Devices chain.

Figure 20. Starting an embedded code debug session.

The debug environment offers the full suite of tools you would expect to see in order to efficiently debug the embedded code.
These features include:
• Setting Breakpoints
• Adding Watches
• Stepping into and over at both the source (*.C) and instruction (*.asm) level

• Reset, Run and Halt code execution
• Run to cursor
All of these and other feature commands can be accessed from the Debug menu or the associated Debug toolbar.

CR0114 (v2.0) March 13, 2008 19

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Various workspace panels are accessible in the debug environment, allowing you to view/control code-specific features, such as
Breakpoints, Watches and Local variables, as well as information specific to the microcontroller in which the code is running,
such as memory spaces and registers.
These panels can be accessed from the View » Workspace Panels » Embedded sub menu, or by clicking on the Embedded
button at the bottom of the application window and choosing the required panel from the subsequent pop-up menu.

Figure 21. Workspace panels offering code-specific information and controls

Figure 22. Workspace panels offering information specific to the parent processor.

20 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Full-feature debugging is of course enjoyed at the source code level – from within the source code file itself. To a lesser extent,
debugging can also be carried out from a dedicated debug panel for the processor. To access7 this panel, first double-click on
the icon representing the microcontroller to be debugged, in the Soft Devices region of the view. The Instrument Rack – Soft
Devices panel will appear, with the chosen processor instrument added to the rack (Figure 23).

Figure 23. Accessing debug features from the microcontroller's instrument panel

Note: Each core microcontroller that you have included in the design will appear, when double-clicked, as an Instrument in the
rack (along with any other Nexus-enabled devices).
The Nexus Debugger button provides access to the associated debug panel (Figure 24), which in turn allows you to interrogate
and to a lighter extent control, debugging of the processor and its embedded code, notably with respect to the registers and
memory.
One key feature of the debug panel is that it enables you to specify (and therefore change) the embedded code (HEX file) that is
downloaded to the microcontroller, quickly and efficiently.

For more information on the content and use of processor debug panels, press F1 when the
cursor is over one of these panels.

For further information regarding the use of the embedded tools for the TSK165x, see the Using
the TSK165x Embedded Tools guide.

For comprehensive information with respect to the embedded tools available for the TSK165x,
see the TSK165x Embedded Tools Reference.

7 The debug panels for each of the debug-enabled microcontrollers are standard panels and, as such, can be readily accessed from the View »
Workspace Panels » Instruments sub menu, or by clicking on the Instruments button at the bottom of the application window and choosing
the required panel – for the processor you wish to debug – from the subsequent pop-up menu.

CR0114 (v2.0) March 13, 2008 21

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Figure 24. Processor debugging using an associated processor debug panel

22 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Instruction Set
All TSK165x instructions are binary code compatible. Each instruction comprises a 12-bit word divided into an Opcode, which
specifies the instruction type, and one or more operands, which further specify the operation of the instruction.

Binary Opcode Instructions
Table 11 below summarizes the 12-bit Opcodes assigned to the various instructions in the set.

Table 11. Instruction Set in binary opcode

12-Bit Opcode 12-Bit Opcode
Mnemonic

MSB LSB
Mnemonic

MSB LSB

ADDWF 0001 11df ffff IORLW 1101 kkkk kkkk

ANDLW 1110 kkkk kkkk IORWF 0001 00df ffff

ANDWF 0001 01df ffff MOVF 0010 00df ffff

BCF 0100 bbbf ffff MOVLW 1100 kkkk kkkk

BSF 0101 bbbf ffff MOVWF 0000 001f ffff

BTFSC 0110 bbbf ffff NOP 0000 0000 0000

BTFSS 0111 bbbf ffff RETLW 1000 kkkk kkkk

CALL 1001 kkkk kkkk RLF 0011 01df ffff

CLRF 0000 011f ffff RRF 0011 00df ffff

CLRW 0000 0100 0000 SUBWF 0000 10df ffff

CLRWDT 0000 0000 0100 SWAPF 0011 10df ffff

COMF 0010 01df ffff TRIS 0000 0000 0fff

DECF 0000 11df ffff XORLW 1111 kkkk kkkk

DECFSZ 0010 11df ffff XORWF 0001 10df ffff

GOTO 101k kkkk kkkk

INCF 0010 10df ffff

INCFSZ 0011 11df ffff

Opcode Field Descriptions
Table 12. Opcode field descriptions

Field Description

f Register file address (0x00 to 0x7F)

W Working register (Accumulator)

b Bit address within an 8-bit file register

k Literal field, constant data or label

x Don’t care location (= 0 or 1)

d Destination select:

d = 0 (store result in W)

d = 1 (store result in file register ‘f’)

Default is d = 1

CR0114 (v2.0) March 13, 2008 23

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Field Description

label Label name

TOS Top of Stack

PC Program Counter

dest Destination, either the W register or the specified register file location.

Instruction Format
Figure 25 shows the three general formats that instructions can have, depending on whether they are byte-oriented, bit-oriented
or literal and control operations.

d f(FILE #)

11 6 5 4 0

Byte-oriented file register operations

d = 0 for destination W
d = 1 for destination f
f = 5-bit file register address

Bit-oriented file register operations

OPCODE B(BYT #) f(FILE #)
11 8 5 4 0

b = 3-bit bit address
f = 5-bit file register address

7

Literal and control operations (except GOTO)

OPCODE k(literal)

11 8 7 0

k = 8-bit immediate value

Literal and control operations - GOTO instruction

OPCODE k(literal)
11 9 8 0

k = 9-bit immediate value

OPCODE

Figure 25. General format for instruction

Status Flag Modifications
Table 13 below shows the effect using each instruction has on the special function register STATUS. Only the lowest three bits
of this register are affected – Bit 2 (C), Bit 1 (DC) and Bit 0 (Z).

Table 13. STATUS Flag modification (C, DC, Z)

Flag Flag
Instruction

C DC Z
Instruction

C DC Z

ADDWF X X X IORLW X

ANDLW X IORWF X

ANDWF X MOVF X

BCF MOVLW

BSF MOVWF

BTFSC NOP

24 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Flag Flag
Instruction Instruction

C DC Z C DC Z

BTFSS RETLW

CALL RLF X

CLRF 1 RRF X

CLRW 1 SUBWF X X X

CLRWDT SWAPF

COMF X TRIS

DECF X XORLW X

DECFSZ XORWF X

GOTO

INCF X

INCFSZ

Instruction Set – Functional Groupings
Table 14. Arithmetic operations

Mnemonic Description Byte Cycle

ADDWF f,d Add W to f 1 1

DECF f,d Decrement f 1 1

INCF f,d Increment f 1 1

SUBWF f,d Subtract W from f 1 1

Table 15. Logic operations

Mnemonic Description Byte Cycle

ANDLW k AND literal with W 1 1

ANDWF f,d AND W with f 1 1

CLRF f Clear f 1 1

CLRW - Clear W 1 1

CLRWDT - Clear Watchdog Timer 1 1

COMF f,d Complement f 1 1

IORLW k Inclusive OR literal with W 1 1

IORWF f,d Inclusive OR W with f 1 1

NOP - No operation 1 1

RLF f,d Rotate left f through Carry 1 1

RRF f,d Rotate right f through Carry 1 1

SWAPF f,d Swap f 1 1

XORLW k Exclusive OR literal with W 1 1

XORWF f,d Exclusive OR W with f 1 1

CR0114 (v2.0) March 13, 2008 25

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Table 16. Data transfer

Mnemonic Description Byte Cycle

MOVF f,d Move f 1 1

MOVLW k Move literal to W 1 1

MOVWF f Move W to f 1 1

TRIS f Load TRIS register 1 1

Table 17. Boolean manipulation

Mnemonic Description Byte Cycle

BCF f,b Bit clear f 1 1

BSF f,b Bit set f 1 1

Table 18. Program branches

Mnemonic Description Byte Cycle

BTFSC f,b Bit Test f, Skip if Clear 1 1(2)

BTFSS f,b Bit Test f, Skip if Set 1 1(2)

CALL k Call subroutine 1 2

DECFSZ f,d Decrement f, Skip if zero 1 1(2)

GOTO k Unconditional branch 1 2

INCFSZ f,d Increment f, Skip if zero 1 1(2)

RETLW k Return, place literal in W 1 2

Instruction Set – Detailed Reference

ADDWF f,d
Description: Add the contents of the W register and register ‘f’. If ‘d’ is 0, the result is stored in the W register. If ‘d’ is 1, the

result is stored back in register ‘f’.

Operation: (W) + (f) → (dest)

Words: 1

Status Affected: C, DC, Z

Encoding:

0 0 0 1 1 1 d f f f f f

ANDLW k
Description: The contents of the W register are AND’ed with the eight-bit literal ‘k’. The result is placed in the W register.

Operation: (W) AND (k) → (W)

Words: 1

Status Affected: Z

Encoding:

26 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

1 1 1 0 k k k k k k k k

ANDWF f,d
Description: The contents of the W register are AND’ed with register ‘f’. If ‘d’ is 0, the result is stored in the W register. If ‘d’

is 1, the result is stored back in register ‘f’.

Operation: (W) AND (f) → (dest)

Words: 1

Status Affected: Z

Encoding:

0 0 0 1 0 1 d f f f f f

BCF f,b
Description: Bit ‘b’ in register ‘f’ is cleared.

Operation: 0 → (f)

Words: 1

Status Affected: None

Encoding:

0 1 0 0 b b b f f f f f

BSF f,b
Description: Bit ‘b’ in register ‘f’ is set.

Operation: 1 → (f)

Words: 1

Status Affected: None

Encoding:

0 1 0 1 b b b f f f f f

BTFSC f,b
Description: If bit ‘b’ in register ‘f’ is 0 then the next instruction is skipped.

Operation: skip if (f)=0

Words: 1

Status Affected: None

Encoding:

0 1 1 0 b b b f f f f f

BTFSS f,b
Description: If bit ‘b’ in register ‘f’ is 1 then the next instruction is skipped.

Operation: skip if (f)=1

Words: 1

Status Affected: None

Encoding:

0 1 1 1 b b b f f f f f

CR0114 (v2.0) March 13, 2008 27

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

CALL k
Description: Subroutine call. First, return address (PC+1) is pushed onto the stack. The eight bit immediate address is

loaded into PC bits <7:0>.

For the TSK165B and TSK165C (PC 11 bits), the upper bits are loaded from STATUS<6:5>.

PC<8> is always cleared.

CALL is a two cycle instruction.

Operation: (PC) → Top of STACK

 k → PC<7:0>

 (STATUS<6:5>) → PC<10:9> - (in the case of the TSK165B and TSK165C)

 0 → PC<8>

Words: 1

Status Affected: None

Encoding:

1 0 0 1 k k k k k k k k

CLRF f
Description: The contents of register ‘f’ are cleared and the Zero bit (Z) bit is set.

Operation: 00h → (f)

 1 → Z

Words: 1

Status Affected: Z

Encoding:

0 0 0 0 0 1 1 f f f f f

CLRW
Description: The W register is cleared. Zero bit (Z) is set.

Operation: 00h → (W)

 1 → Z

Words: 1

Status Affected: Z

Encoding:

0 0 0 0 0 1 0 0 0 0 0 0

CLRWDT
Description: This instruction resets the Watchdog Timer (WDT). The Watchdog Timer is an independently placed

peripheral component, external to the TSK165x. Using this instruction essentially takes the WDTC pin high for
a single clock cycle, providing the clear impulse signal to the WDT. The STATUS bit TO is set.

Operation: 1 → TO

Words: 1

Status Affected: TO

Encoding:

0 0 0 0 0 0 0 0 0 1 0 0

28 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

COMF f,d
Description: The contents of register ‘f’ are complemented. If ‘d’ is 0, the result is stored in the W register. If ‘d’ is 1, the

result is stored back in register ‘f’.

Operation: NOT (f) → (dest)

Words: 1

Status Affected: Z

Encoding:

0 0 1 0 0 1 d f f f f f

DECF f,d
Description: Decrement register ‘f’. If ‘d’ is 0, the result is stored in the W register. If ‘d’ is 1, the result is stored back in

register ‘f’.

Operation: (f) - 1 → (dest)

Words: 1

Status Affected: Z

Encoding:

0 0 0 0 1 1 d f f f f f

DECFSZ f,d
Description: The contents of register ‘f’ are decremented. If ‘d’ is 0, the result is placed in the W register. If ‘d’ is 1, the

result is placed back in register ‘f’. If the result is 0, the next instruction, which is already fetched, is discarded
and an NOP is executed instead, making it a two cycle instruction.

Operation: (f) - 1 → (dest) skip if result = 0

Words: 1

Status Affected: None

Encoding:

0 0 1 0 1 1 d f f f f f

GOTO k
Description: GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>.

For the TSK165B and TSK165C (PC 11 bits), the upper bits are loaded from STATUS<6:5>.

GOTO is a two cycle instruction.

Operation: k → PC<8:0>

 (STATUS<6:5>) → PC<10:9> (in the case of the TSK165B and TSK165C)

Words: 1

Status Affected: None

Encoding:

1 0 1 k k k k k k k k k

INCF f,d
Description: The contents of register ‘f’ are incremented. If ‘d’ is 0, the result is placed in the W register. If ‘d’ is 1, the result

is placed back in register ‘f’.

Operation: (f) + 1 → (dest)

Words: 1

Status Affected: Z

Encoding:

CR0114 (v2.0) March 13, 2008 29

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

0 0 1 0 1 0 d f f f f f

INCFSZ f,d
Description: The contents of register ‘f’ are incremented. If ‘d’ is 0, the result is placed in the W register. If ‘d’ is 1, the result

is placed back in register ‘f’. If the result is 0, then the next instruction, which is already fetched, is discarded
and an NOP is executed instead, making it a two cycle instruction.

Operation: (f) + 1 → (dest), skip if result = 0

Words: 1

Status Affected: None

Encoding:

0 0 1 1 1 1 d f f f f f

IORLW k
Description: The contents of the W register are OR’ed with the eight bit literal ‘k’. The result is placed in the W register.

Operation: (W) OR (k) → (W)

Words: 1

Status Affected: Z

Encoding:

1 1 0 1 k k k k k k k k

IORWF f,d
Description: Inclusive OR the W register with register ‘f’. If ‘d’ is 0, the result is placed in the W register. If ‘d’ is 1, the result

is placed back in register ‘f’.

Operation: (W) OR (f) → (dest)

Words: 1

Status Affected: Z

Encoding:

0 0 0 1 0 0 d f f f f f

MOVF f,d
Description: The contents of register ‘f’ are moved to destination ‘d’. If ‘d’ is 0, the destination is the W register. If ‘d’ is 1,

the destination is the file register ‘f’.

Operation: (f) → (dest)

Words: 1

Status Affected: Z

Encoding:

0 0 1 0 0 0 d f f f f f

MOVLW k
Description: The eight bit literal ‘k’ is loaded into the W register. The don’t cares will assemble as 0s.

Operation: k → (W)

Words: 1

Status Affected: None

Encoding:

1 1 0 0 k k k k k k k k

30 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

MOVWF f
Description: Move data from the W register to register ‘f’.

Operation: (W) → (f)

Words: 1

Status Affected: None

Encoding:

0 0 0 0 0 0 1 f f f f f

NOP
Description: No operation.

Operation: No operation.

Words: 1

Status Affected: None

Encoding:

0 0 0 0 0 0 0 0 0 0 0 0

RETLW k
Description: The W register is loaded with the eight bit literal ‘k’. The program counter is loaded from the top of stack (the

return address). This is a two cycle instruction.

Operation: k → (W)

 TOS → PC

Words: 1

Status Affected: None

Encoding:

1 0 0 0 k k k k k k k k

RLF f,d
Description: The contents of register ‘f’ are rotated one bit to the left through the Carry Flag. If ‘d’ is 0, the result is placed in

the W register. If ‘d’ is 1, the result is stored back in register ‘f’.

Operation: See description below.

 register ‘f’ C

Words: 1

Status Affected: C

Encoding:

0 0 1 1 0 1 d f f f f f

RRF f,d
Description: The contents of register ‘f’ are rotated one bit to the right through the Carry Flag. If ‘d’ is 0, the result is placed

in the W register. If ‘d’ is 1, the result is stored back in register ‘f’.

Operation: See description below.

 register ‘f’ C

Words: 1

Status Affected: C

CR0114 (v2.0) March 13, 2008 31

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Encoding:

0 0 1 1 0 0 d f f f f f

SUBWF f,d
Description: Subtract (2’s complement method) the W register from register ‘f’. If ‘d’ is 0, the result is stored in the W

register. If ‘d’ is 1, the result is stored back in register ‘f’.

Operation: (f) – (W) → (dest)

Words: 1

Status Affected: C, DC, Z

Encoding:

0 0 0 0 1 0 d f f f f f

SWAPF f,d
Description: The upper and lower nibbles of register ‘f’ are exchanged. If ‘d’ is 0, the result is placed in the W register. If ‘d’

is 1, the result is placed in register ‘f’.

Operation: (f<3:0>) → (dest<7:4>)

 (f<7:4>) → (dest<3:0>)

Words: 1

Status Affected: None

Encoding:

0 0 1 1 1 0 d f f f f f

TRIS f
Description: TRIS register ‘f’ (f = 5, 6 or 7) is loaded with the contents of the W register.

Operation: (W) → TRIS register f

Words: 1

Status Affected: None

Encoding:

0 0 0 0 0 0 0 0 0 f f f

XORLW k
Description: The contents of the W register are XOR’ed with the eight bit literal ‘k’. The result is placed in the W register.

Operation: (W) XOR k → (W)

Words: 1

Status Affected: Z

Encoding:

1 1 1 1 k k k k k k k k

XORWF f,d
Description: Exclusive OR the contents of the W register with register ‘f’. If ‘d’ is 0, the result is stored in the W register. If

‘d’ is 1, the result is stored back in register ‘f’.

Operation: (W) XOR (f) → (dest)

Words: 1

Status Affected: Z

Encoding:

0 0 0 1 1 0 d f f f f f

32 CR0114 (v2.0) March 13, 2008

Legacy documentation
refer to the Altium Wiki for current information

TSK165x RISC MCU

Instruction Timing
The instruction fetch and execute are pipelined such that a fetch takes one instruction cycle while decode and execute takes
another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction
causes the Program Counter to change, then two cycles are required to complete the instruction (Table 19).

Table 19. Instruction pipeline flow

MOVLW 55H Fetch 1 Execute 1

MOVWF PORTB Fetch 2 Execute 2

CALL SUB1 Fetch 3 Execute 3

BSF PORTA,BIT3 Fetch 4 Flush

Instr a addr SUB1 Fetch SUB1 Execute SUB1

 Fetch SUB1+1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is
“flushed” from the pipeline while the new instruction is being fetched and then executed.

Revision History

Date Version No. Revision

20-Jan-2004 1.0 New product release

22-Oct-2004 1.1 Modifications to example design images and images used in the On-Chip Debugging section.
Addition of Nexus Debugger panel.

08-Feb-2005 1.2 Modifications to debug panel information in On-Chip Debugging section.

09-May-2005 1.3 Updated for SP4

12-Dec-2005 1.4 Path references updated for Altium Designer 6

13-Mar-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:

Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

CR0114 (v2.0) March 13, 2008 33

	Features
	Performance
	Available Devices
	 Architectural Overview
	Symbols
	 Pin Description
	Memory Organization
	Program Memory
	Program Memory Timing
	Program Memory Read Cycle

	Data Memory
	Data Memory Timing
	Data Memory Read Cycle
	Data Memory Write Cycle
	Data Memory Read and Write Cycle

	Special Function Registers

	 Hardware Description
	Block Diagram
	Control Processor Unit
	Arithmetic Logic Unit
	Working Register (W))
	STATUS Register (STATUS))

	Address Control Unit
	Program Counter (PC))
	Stack
	File Select Register (FSR))

	Ports Unit
	Port Registers (Port A, Port B, Port C, Port D, Port E, Port F)
	TRIS Registers (TRISA, TRISB, TRISC, TRISD, TRISE, TRISF)
	Device Reset Timer

	Clock Domains

	Resetting the Microcontroller
	Hardware Reset (RST)
	Reset on FPGA Initialization (POWERUP)
	External Watchdog Timer Reset
	Reset Conditions

	 On-Chip Debugging
	Adding Debug Functionality to a Standard Core Variant
	Accessing the Debug Environment

	 Instruction Set
	Binary Opcode Instructions
	Opcode Field Descriptions
	Instruction Format
	Status Flag Modifications
	Instruction Set – Functional Groupings
	Instruction Set – Detailed Reference
	ADDWF f,d
	ANDLW k
	ANDWF f,d
	BCF f,b
	BSF f,b
	BTFSC f,b
	BTFSS f,b
	 CALL k
	CLRF f
	CLRW
	CLRWDT
	 COMF f,d
	DECF f,d
	DECFSZ f,d
	GOTO k
	INCF f,d
	INCFSZ f,d
	IORLW k
	IORWF f,d
	MOVF f,d
	MOVLW k
	MOVWF f
	NOP
	RETLW k
	RLF f,d
	RRF f,d
	SUBWF f,d
	SWAPF f,d
	TRIS f
	XORLW k
	XORWF f,d

	Instruction Timing

	Revision History

