Electronic design is the process of capturing a logical design in the schematic, then representing that design as a set of objects in the PCB workspace. Even for a small circuit, the schematic can include many components, each with numerous models and parameters, and the PCB workspace will end up containing a large number of design objects that make up the board. During the course of the design process, the properties of these objects will need to be changed as the designer works to balance out the various design requirements.

To support the task of editing many objects, previous versions of Altium design tools included a feature called Global Editing. The basic approach of this feature was to edit one object, and then push those changes onto other objects.

With the introduction of the DXP platform, the technique for applying an edit globally changed. The basic approach now is to select the objects to be edited, inspect their properties, and then edit them.

Keeping this select – inspect – edit sequence in mind, let's look at each step in detail.

Selecting Multiple Objects

There are actually a number of ways of selecting objects, for example the Windows standard mouse click shortcuts can be used. This approach is ideal when the number of objects to be selected is small, or perhaps when there are different kinds of objects to be edited simultaneously.

To select many objects, including over a number of schematic sheets, you use the Find Similar Objects dialog. To open this dialog, right-click on one of the objects to be edited, and select Find Similar Objects from the pop-up menu.

Let's walk through the process using an example. Let's say we need to change the name of a power net in the schematic from VCC to 3V3. This requires all the VCC power ports on all of the sheets to have their Net attribute changed. The first step is to find a VCC power port on the schematic, right click on it, and select Find Similar Objects from the pop-up menu.

Figure 2 shows the Find Similar Objects dialog after right-clicking on a schematic Power Port. It is important to note that the dialog lists the properties of the object you clicked on, so the contents of this dialog will be different if you clicked on something else.

You can see that the dialog has two columns, the column highlighted in Figure 2 shows the current properties of the object you clicked on – down the bottom you can see that the net name Text is currently VCC.
You can re-position a group of selected PCB and schematic objects respectively using the arrow keys. These selected objects are moved as a whole in increments according to the PCB/Schematic editor’s snap grid’s values.

You can select multiple schematic or PCB objects and reposition them individually (in the order that you selected them in) using the Reposition Selected Components command (Tools » Component Placement » Reposition Selected Components or shortcut T, O, C).

Selected objects can be ‘nudged’ by small amounts (by the current snap grid value) by pressing the arrow keys while holding down the CTRL key.

Selected objects can also be ‘nudged’ by large amounts (the snap grid value by a factor of 10) by pressing the arrow keys while holding down the CTRL and SHIFT keys together.

For the schematic objects, the current Snap Grid setting is defined in the Document Options dialog (Design » Document Options or shortcut D, O).

For the PCB objects, the current Snap Grid is defined in the Board Options dialog (Design » Board Options or shortcut D, O).

For both Schematic and PCB objects, use the G shortcut to cycle through different snap grid setting values. You can also use the View » Grids submenu or the Grids right-click menu to select a new grid value.
Inspecting the Objects

Both the schematic and PCB editors include a panel called the SCH Inspector. The basic behavior of the Inspector is that it lists the properties of all objects that are currently selected. The set of selected objects could be the same kind of object, for example Figure 6 shows the properties of ten power ports.

Properties that are identical for all the selected objects have their value displayed, for example all ten power ports currently have an Orientation of 90 degrees.

For each power port property that has a different value, you will see <…> instead (e.g., the X1 location). This means that not all these ten objects have the same X1 value, which makes sense since they each have a different location.

Note in Figure 6 that the SCH Inspector includes two options at the top. It is important that you set the second of these, which sets the display of where the found objects are from – from the current document, open documents, or open documents of the same project. To have all the selected power ports loaded into the Inspector, you will need to set this to open documents or open documents of the same project.

What is the SCH Inspector?

The SCH Inspector is a panel that displays the properties of whatever is currently selected. This could be one object, or many objects. If more than one object is selected, only properties that are common to all selected objects will be listed. Common properties that have the same value will show that value, otherwise the value will display <…>. When you type a value into the SCH Inspector and press Enter on the keyboard, the value of that property is immediately changed for all selected objects.

The SCH Inspector has certain characteristics that make it very handy for everyday use.

The first is that because it is a panel, it can be visible all the time so you do not need to double-click to open a dialog. This means that you can click to select any object in the workspace and its properties will be displayed immediately. This can be much more efficient if you are reviewing settings in your design. For example, you might want to check the designator text height of a few components on the PCB. If the SCH Inspector is open, you simply click on a designator, read the value, and so on. This would be much faster than double-clicking on one designator, reading the height, closing the dialog, and so on.

The second advantage of the SCH Inspector is that it can display the common properties of different objects, and let you edit them. We'll see how this can be useful later in the tutorial.

Note that at the bottom of the SCH Inspector the total number of selected objects is displayed, always check this and confirm that it is what you expect.
Editing the Objects

So far you have *selected* the objects you want to edit, *inspected* the properties in the Inspector, so now you are ready to *edit* them.

When you click to edit the net name text, the ... browse button appears at the end of the **Text** field. You can click on this button when you want to perform a partial string substitution. For this edit, we will be replacing all the text, so we simply replace the entire contents of the cell with the new text, *3V3*.

The change you make to the text value is applied to all the selected objects as soon as you press **ENTER** on the keyboard, or click another cell in the SCH Inspector.

If you change your mind during the edit, press the **ESC** key on the keyboard to abort the edit. To **Undo** an edit that has been applied, select **Edit » Undo** from the menus. If the edit has been applied to multiple schematic sheets, you will need to perform an **Undo** action in each sheet.

Figure 8 shows the **SCH Inspector** panel after changing the text and pressing **ENTER**, next to one of the edited power ports.

You can use this approach to apply an edit globally to any type of object in the Schematic or PCB Editors.

After performing the edit, you will probably find that all the other objects on the schematic are faded out, or masked. While something is masked it cannot be edited, to remove the mask click the **Clear** button at the bottom right of the workspace [shortcut: **SHIFT + C**].

![Figure 8. One of the ten updated power ports](image)

Figure 7. Editing the net name Text

Figure 8. One of the ten updated power ports
Editing Multiple Objects

The edit that we just performed was on a primitive object, that is, one of the basic objects used in the Schematic Editor. More complex objects, such as components, are called group objects; these are essentially a collection of primitive objects. For example, a component on a schematic is a collection of drawing objects, strings, parameters, pins, and references to models. The primitive objects that belong to a group object are sometimes referred to as the child objects, and the group object is their parent object.

Let's look at a typical group object edit that you might want to perform. Your design includes several 470uF 16V capacitors, using the footprint MCCT-B. Currently the voltage is specified as part of the components' comment string. You need to change this and specify the voltage as a component parameter instead, and make this parameter visible on the schematic.

The steps we need to perform are:

1. Select capacitors with a value of 470uF 16V, and MCCT-B footprint.
2. Change their comment to be 470uF (remove the 16V text).
3. Add a new parameter to these components, with a name of Voltage, and a value of 16V.
4. Change the visibility of this parameter so its displayed on the schematic.

While this might seem a complex set of edits to perform in one go, it is actually quite straightforward.

Step 1. Selecting the Capacitors

To select all the 470uF 16V capacitors, right-click on the component symbol of one of them and select Find Similar Objects from the pop-up menu.

We will use the approach covered in the previous example, except this time you want to match on components that have the same Part Comment, and the same Current Footprint, as shown in Figure 9.

Note that we can also match on components that have a designator starting with the letter C. This is done by changing the component designator value in the Find Similar Objects dialog from what it opened as, to C* (Figure 9). Click OK to select the matching capacitors.

Step 2. Changing the Comment String

After running the Find Similar Objects dialog, the SCH Inspector panel opens (Run Inspector option in Find Similar Objects dialog enabled). Behind it will be the schematic sheet displaying the matching objects selected on that sheet. If the Zoom Matching and Mask Matching options were enabled in the Find Similar Objects dialog, then the view would be zoomed and all the objects that did not match would be faded, or masked out.

Figure 10 shows the results. There are four capacitors found on this current schematic sheet.

You can check the status line at the bottom of the SCH Inspector panel to see if the same capacitors exist on other sheets.

To change the comment string, simply delete the 16V from the string, as shown in Figure 11, and press ENTER to apply the change.
Step 3. Adding a New Parameter to the Component

The next change that we need to make is to add a new parameter to these four components, called Voltage, and set the value to 16V. To do this, we use the Add User Parameter feature at the bottom of the SCH Inspector panel (Figure 12). Note that we will enter the value first, then the parameter name.

1. Firstly, type in the value of the new parameter, 16V, into the Add User Parameter field in the Inspector.
2. Press ENTER to apply the change. When you do, the Add new parameter to XX objects dialog will appear.
3. Type in the new parameter name and click the OK button.

Note: Click on the red cross (X) next to each parameter to delete it.

The SCH Inspector panel will now include the new Voltage parameter in the list at the bottom, with a value of 16V, as shown in Figure 13. You can add as many parameters as you wish using this approach.

Step 4. Setting the Voltage Parameter to be Visible

The last step is to make the new Voltage parameter visible on these four capacitors. The visibility of a parameter is a property of the parameter itself, not the component, so we cannot change this in the SCH Inspector panel yet because it is displaying the properties of the parent components.

To access the properties of the child parameters, click on the hyperlinked Parameter name, Voltage, in the Parameters list at the bottom of the SCH Inspector panel. When you do this, the Voltage parameter properties for the selected components will be loaded into the SCH Inspector panel, ready to edit. You can confirm this by checking the Object Kind at the top of the SCH Inspector panel – it should say ‘Parameter’.

Now we can make the Voltage parameter visible on the schematic. To do this, disable the Hide option, as shown in Figure 14.

If you wanted to return to the parent components, perhaps to edit some other property, you would do this by clicking the Owner hyperlink, as shown in Figure 15.

We have now updated the comment string for all 470uF capacitors, using a MCCT-B footprint. We have also added a new parameter called Voltage, set its value to 16V, and made this parameter visible.
Applying an Edit to Different Types of Objects Globally

The **PCB Inspector** panel can be used to edit both multiple instances of the same object, and also used to edit common properties of different objects.

Changing the Net Name for Existing Routing

For the first example, let’s assume that you have made design changes on the schematic, removing a pin from one net and adding it to another. If the nets were already routed on the PCB, then when you update the PCB, you could end up with routing that has the wrong net name. This routing could include tracks and vias, as well as other kinds of objects.

There are a few ways this could be resolved. The easiest is to use the **PCB Inspector** panel. Let’s go through the process now.

1. In the PCB, you would select all the primitives in the routed net that needs its name changed, using the **Edit » Select » Connected Copper** command [shortcut: CTRL + H].
2. If it is not already visible, display the **PCB Inspector** panel [shortcut: F11].
3. The **PCB Inspector** panel will only show properties that are common to all the selected objects. If your selection was correct, one of these will be the **Net** name. To change this, simply select the new net name from the drop down list and press **ENTER** to apply the change. The net property of all the different objects in the routed net will be changed.

Changing the Layer Property of Different Objects

Another example might be that you need to move all the objects that are on one mechanical layer to another mechanical layer. To do this, you would:

1. Click the **Layer** tab for the current mechanical layer at the bottom of the PCB Editor window to make it the active layer.
2. Select all the objects on that layer using the **Select » All on Layer** command [shortcut: S, Y].
3. If it is not already visible, display the **PCB Inspector** panel [shortcut: F11].
4. Select the new layer name from the **Layer** list, and press **ENTER** to apply the change.
Locking Design Objects

Design objects can be locked from being moved or being edited on the schematic or PCB document by enabling their **Locked** attributes. For instance, if the position or size of specific objects are critical, lock them. This **Locked** attribute is available in the design objects’ properties dialogs or these **Locked** attributes can be toggled collectively in the **SCH List** or **PCB List** panels.

Locking Design Objects on Schematic Sheets and PCB Documents

1. To lock a group of schematic objects, you can use the **SCH List** panel to toggle the **Locked** options as shown in right side of Figure 18. You can do the same for a group of PCB objects in the **PCB List** panel as well.

2. To lock an individual object, double-click the object and when its properties dialog opens, enable the **Locked** option as shown in the left side of the Figure 18.

If you attempt to move or rotate a design object that has its **Locked** property enabled, a dialog appears asking for confirmation to proceed with the edit (Figure 19).

If the **Protect Locked Objects** option is enabled in the **Schematic – Graphical Editing** page (Figure 20) or in the **PCB Editor – General** page of the **Preferences** dialog (**Tools** > **Schematic Preferences** or **Tools** > **Preferences** in the Schematic or PCB Editors respectively) and the design object is locked, this object cannot be selected or graphically edited. Double-click on the **Locked** object to disable the **Locked** property or disable the **Protect Locked Objects** option in the **Graphical Editing** page under the **Schematic** folder in the **Preferences** dialog to graphically edit this object.

If you attempt to select locked objects along with other objects, only those objects that are unlocked can be selected and moved as a group when the **Protect Locked Objects** option is enabled.

Figure 18. Enabled **Locked** property for Wires

Figure 19. Locked design object attempting to be edited graphically

Figure 20. Protecting locked objects in the **Schematic - Graphical Editing** page in the **Preferences** dialog.
User-defined design attributes are added to your design using parameters. Component parameters can be used to define anything from component ratings, to stock information, to PCB component class membership. You can even include links to component datasheets as a parameter. Parameter Sets containing PCB layout, NetClass and/or differential pair directives can be added to nets to specify PCB design requirements, or to include the net in a PCB net class for example. Document parameters can be used to define things like the title of the sheet, the designer's name, and so on.

Parameters can be added and edited individually, or you can use the Parameter Table Editor dialog to add and edit them across the entire design, or across an entire library. When you open the dialog, it gathers all parameter data for the entire design and presents it in a table-like grid. The Parameter Table Editor is launched by selecting Tools » Parameter Manager.

After selecting Parameter Manager from the menus, the Parameter Editor Options dialog (Figure 21) appears first. In this dialog, you determine which type of parameters you want loaded into the Parameter Table Editor dialog.

If you were working on component parameters you would disable all options in the Include Parameters Owned By section, except for the Parts option. If you wanted to work on document parameters, you would only enable the Documents option.

Note the Exclude System Parameters option – these include things like component model settings, document parameters that were defined in the template, and so on. Explore this option when you are more familiar with managing parameters.

Let's do some parameter editing now. The following descriptions and images are based on the 4 Port Serial Interface reference design example. Configure the Parameter Editor Options dialog as shown in Figure 19.

Renaming a Parameter

In Figure 22 below, you will notice that one of the existing parameters is called Text Field1. This needs to be renamed. ‘Component Type’ would be a more suitable name.

To rename a parameter, right-click in any cell in that column and select Rename from the pop-up menu. The Rename dialog will open, so type in the new name and click OK. Note that the column heading will have changed and now has a small blue triangle next to the name (as shown in Figure 23). This icon indicates that the value of this cell has changed. For complete details on the various icons used in this editor, press F1 when the cursor is anywhere over the dialog.

You will also notice in Figure 22 that some of the components do not have a Component Type parameter at all – this is indicated by the diagonal hatching. The next step is to add the Component Type parameter to all the other components.
Adding a Parameter

Figure 24. Adding parameters to selected components, before adding on the left, and after on the right.

To add a parameter to components that do not currently have it, select those cells in the editor using the SHIFT + Click or CTRL + Click key combinations. Then right-click and choose Add from the pop-up menu.

After selecting Add, you will notice that a small green plus symbol appears in each cell. This indicates that a new parameter has been added.

Now that the parameter has been added, you can define the component type for each component. The Parameter Table Editor dialog supports standard table editing shortcuts. Use the cursor keys to ‘walk’ around the grid, press F2 to edit a cell, and press ENTER to apply the edit.

Multiple cells can be edited in one go – select the cells, right-click on the selection and choose Edit from the pop-up menu, type in the new value, and press ENTER to apply the edit to all selected cells.

Applying the Parameter Changes

The parameter edits that have just been carried out are currently held in the Parameter Table Editor and they have not been applied to the components on the schematic sheets yet. To apply these changes to the components, you need to generate an ECO (Engineering Change Order) and then apply the ECO to the design.

When you are satisfied with your parameter edits, click the Accept Changes (Create ECO) button. The Parameter Editor Table dialog will close and the Engineering Change Order dialog will appear.

Click the Validate Changes button to check that the changes can be applied, then click Execute Changes to apply the parameter changes to the components. Once the changes have been applied, close the Engineering Change Order dialog.
Managing Multiple Component Models

The schematic symbol represents the component on the schematic. The wiring then connects the component pins to create the connectivity. While this creates the schema, or the interconnective structure of the design, other information is required to translate that into the final physical PCB.

The ability to translate the original schema into other forms, such as a PCB layout, or perhaps a circuit simulation description, is provided by the models that you attach to each component. Different model kinds are supported, including PCB footprints, spice simulation models, signal integrity analysis models, and 3D models. While these can be defined on the schematic sheet, they are typically defined in the component library. For an individual component, it is straightforward to add a model to a component. You can add them in the model editing region at the bottom of the main schematic library editing window, as shown in Figure 25.

To add or edit model settings across multiple components, the Library editor includes a Model Manager. To open the Model Manager for the current library, select Tools » Model Manager from the menus. The Model Manager dialog will open, displaying the components in the current library down the left, click to select a component and display a list of the models currently associated with that component.

Tasks that you can perform in the Model Manager include:
1. Add a new model to one or more components
2. Copy a model from one component, and paste it to one or more components
3. Remove a model from one or more components
4. Edit the model assigned to one or more components.

All of these commands can be executed from the right-click menu in the model list region of the dialog and some can also be performed using the buttons below the model list region.

Figure 26 shows the Model Manager with a PCB footprint model selected and about to be copied. Once it has been copied, it can be pasted to multiple components. To do this, use SHIFT + Click or CTRL + Click to select multiple components in the list. Once the required components are selected, right-click in the Model region and select Paste from the pop-up menu.

An important point to remember when you select multiple components is that only the models that are common to all selected components will be shown. So when you go to paste a footprint model to multiple components, don’t be surprised if the model list region is blank. As soon as you change to only have one component selected, the current models will appear in the list.

For a better understanding of component models, refer to the Component, Model and Library Concepts article.

For more information on creating library components and attaching models, refer to the Creating Library Components tutorial.

Figure 27. The Schematic Library Editor, with the model editing region displayed at the bottom of the main window

Figure 28. Use the Model Manager to manage the models across multiple components

Version (v2.6) Mar 10, 2008
Managing Footprints Across the Entire Design

Altium Designer’s schematic editor now includes a powerful Footprint Manager. Launched from the Schematic Editor’s Tools menu (Tools » Footprint Manager), the Footprint Manager lets you review all the footprints associated with every component in the entire project. Multi-select support makes it easy to edit the footprint assignment for multiple components, change how the footprint is linked, or change the Current footprint assignment for components that have multiple footprints assigned. Design changes are applied through Altium Designer’s standard ECO system, updating both the schematic and the PCB if required.

Using a Query to Find and Edit Multiple Objects

Altium Designer has a powerful query engine built into it, which is used to precisely target design objects. A query is essentially a description of something that you would like to find in the design data.

Filtering to Find the Objects

You can query the design data in a number of different ways. One of these is to type the query in to the Filter panel. When you apply the query you are filtering the design database. Each object is tested to see if complies with the query, and if it does, it is added to the result set.

Figure 28 shows the Schematic Library SCHLIB Filter panel, with the query IsPin typed in. When this query is applied, every object in the library is checked (since the Whole Library option is enabled), any object that is a pin will comply and be added to the result set. All other objects are filtered out.

How the results are presented depends on the options on the right of the SCHLIB Filter panel. In Figure 30, you can see that objects that pass the filter (pins in this case) will be selected and zoomed. All other objects that do not pass the filter will be deselected and masked out (faded and made non-editable).

Since the Select option is enabled, the pins will be loaded into the SCH Inspector panel. This panel essentially ‘stacks’ the selected objects to give one view into their common properties, which is not that useful for editing component pins (unless perhaps you wanted to change their length).

The pins will also be displayed in the SCH List panel, which presents design data in a tabular grid, where it is easy to compare and edit one or more objects at once.

When you apply a filter with the Mask out option enabled, the objects that are filtered out will become faded and non-editable. To remove this filter, click the Clear button at the bottom right of the workspace [shortcut: SHIFT + C].
Figure 31 shows the Schematic Library SCHLIB List panel loaded with pins. Note that the from option at the top of the panel is currently set to current component, even though the filter was configured to select them for the whole library. There are scope controls in both the SCHLIB Filter and the SCHLIB List panels; this is because you control filtering separately from result display. You can use this to do things like find all pins in the current library, then switch between looking at all the pins, or just those in the current component.

The tabular grid of the SCHLIB List panel is ideal for reviewing and editing objects. Once you have set the SCHLIB List panel to be in Edit mode (the option at the top left of the panel), you can use keys on the keyboard to ‘walk’ around and edit settings. For example, use the arrow keys to move around the grid, F2 or SPACEBAR to edit the selected cell, ENTER to apply a change, SPACEBAR to toggle an option if that cell is active, and so on.

The SCHLIB List panel is completely configurable. To add or remove columns, or to change the order of columns, right-click on the column headings and select Choose Columns from the context menu.

Using a Spreadsheet Program to Edit Design Data

Not only can you edit data directly in the SCHLIB List panel, you can also multi-select blocks of cells and copy them from the SCHLIB List panel into your preferred spreadsheet program, and from the spreadsheet back into the SCHLIB List panel. For example, you are creating a new component and you have copied all the pin data from the manufacturer’s datasheet into a spreadsheet. Rather than entering this data into the Schematic Library editor one pin at a time, you can:

1. Place one pin in the new schematic component, copy it, then use the Paste Array command to give you the total number of pins required.
2. Use the query IsPin in the Filter panel to load these pins into the List panel.
3. Set up the relevant pin data columns, so that they correspond to the arrangement of columns in the spreadsheet program.
4. Switch to the spreadsheet program, select the required block of pin data and copy it.
5. Switch back to the SCHLIB List panel, select the same block of cells, right-click and select Paste from the pop-up menu

You might want to copy a block of data from the SCHLIB List panel to the spreadsheet first, to see how the data is represented in the spreadsheet. Using this approach, you can quickly configure a large number of component pins in your new component. Figure 32 to Figure 34 illustrate this sequence:

![Figure 32. Pin data in the spreadsheet editor, as it is copied onto the clipboard](image)

![Figure 33. Select the target block of cells in the SCHLIB List panel, right-click and select Paste.](image)
Creating and Editing Data as you Paste from a Spreadsheet or Table

You can also use the Smart Grid Paste tools to quickly update the design objects’ attributes or to create a group of primitives quickly and easily. These tools are available via the right-click menu in the Schematic or PCB Editor’s List panel.

For more information on using the Smart Grid Paste tools, refer to the Editing Attributes with Smart Grid Paste Tools sections in the Allium Designer Panels Reference document.

Filtering Objects in the Design Workspace – How does it work?

Figure 35 shows how design data is filtered and highlighted. Note how you can control the filtering process by writing a Query in the Filter panel, by configuring options in the Find Similar Objects (FSO) dialog (which actually uses a query behind the scenes), or by selecting objects in the Navigator panel. The PCB panel is not shown however, like the Navigator, it can also filter data in the PCB workspace.

The Highlighting engine determines how the filtered data will be presented.

As the user, you can access the filtered Display data in the main graphical editing window, in the Inspector (if you instructed the highlight engine to select it), or in the List panel.

Tips for Writing Queries

1. Use the Query Helper to become familiar with the available query keywords. Click the Helper button in the Filter panel to display the helper.
2. Press F1 over a keyword to display on-line help for that query keyword.
3. Use the Mask field at the bottom of the Query Helper dialog to search for possible keywords. If you include the * wildcard character at the start of the string you are looking for, you will find all references to that text string in the keywords and also in the descriptions.
4. Click the Check Syntax button before you close the Query Helper dialog.
5. Include quotation marks around a variable, for example ‘DIP14’.
6. There is an order of precedence used to resolve queries, so include brackets to be sure that it is resolved in the correct sequence.

For an overview of the query system read the Introduction to the Query Language, for detailed information on writing queries refer to the article, An Insiders Guide to the Query Language.
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version No</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-Dec-2003</td>
<td>1.0</td>
<td>New product release</td>
</tr>
<tr>
<td>1-Dec-2004</td>
<td>2.0</td>
<td>Rewritten to suit updated Inspector, List and Filter panels</td>
</tr>
<tr>
<td>13-Apr-2005</td>
<td>2.1</td>
<td>Updated for Altium Designer Service Pack 4</td>
</tr>
<tr>
<td>29-Nov-2005</td>
<td>2.2</td>
<td>Reviewed and updated for Altium Designer 6</td>
</tr>
<tr>
<td>15-Nov-2006</td>
<td>2.3</td>
<td>Reviewed and updated for Altium Designer 6.6</td>
</tr>
<tr>
<td>8-Feb-2007</td>
<td>2.4</td>
<td>Inserted a section on use of Smart Grid paste tools for Altium Designer 6.7</td>
</tr>
<tr>
<td>18-Jan-2008</td>
<td>2.5</td>
<td>Updated for Altium Designer 6.8. Moving of selected objects in PCB/Schematic with arrow keys added. Locking design objects. Revised information on directives.</td>
</tr>
<tr>
<td>10-Mar-2008</td>
<td>2.6</td>
<td>Converted to A4.</td>
</tr>
<tr>
<td>16-Mar-2011</td>
<td></td>
<td>Updated template.</td>
</tr>
</tbody>
</table>

Software, hardware, documentation and related materials:

Copyright © 2011 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment.

Altium, Altium Designer, Board Insight, DXP, Innovation Station, LiveDesign, NanoBoard, NanoTalk, OpenBus, P-CAD, SimCode, Situs, TASKING, and Topological Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.